aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: a17be7afece1deda691a9b3d94223370494f0197 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
% Thorn documentation template
\documentclass{article}
\begin{document}

\title{IDBrillData}
\author{Carsten Gundlach, Gabrielle Allen}
\date{$Date$}
\maketitle

\abstract{This thorn creates time symmetric initial data for Brill
wave spacetimes.  It can create both axisymmetric data (in a 3D
cartesian grid), as well as data with an angular dependency.}

\section{Purpose}

The purpose of this thorn is to create initial data for a Brill wave
spacetime.  It does so by starting from a three--metric of the form
originally considered by Brill
\begin{equation}
ds^2 = \Psi^4 \left[ e^{2q} \left( d\rho^2 + dz^2 \right)
+ \rho^2 d\phi^2 \right] =\Psi^4 \hat{ds}^{2},
\label{eqn:brillmetric}
\end{equation}
where $q$ is a free function subject to certain regularity and
fall-off conditions, $\rho=\sqrt{x^2+y^2}$ and $\Psi$ is a conformal
factor to be solved for.

Substituting this metric into the Hamiltonian constraint gives an
elliptic equation for the conformal factor $\Psi$ which is then
numerically solved for a given function $q$:
\begin{equation}
\hat{\nabla} \Psi - \frac{\Psi}{8} \hat{R} = 0
\end{equation}
where the conformal Ricci scalar is found to be
\begin{eqnarray}
\hat{R} = -2 \left(e^{-2q} (\partial^2_z q + \partial^2_\rho q) + 
\frac{1}{\rho^2} (3 (\partial_\phi q)^2 + 2 \partial_\phi q)\right)
\end{eqnarray}
Assuming the initial data to be time symmetric means that the momentum
constraints are trivially satisfied.

The thorn considers several different forms of the function $q$
depending on certain parameters that will be described below.

Brill initial data is activated by choosing the {\tt CactusEinstein/ADMBase}
parameter {\tt initial\_data} to be {\tt brilldata}.

In the case of axisymmetry, the Hamiltonian constraint can be written
as an elliptic equation for $\Psi$ with just the flat space Laplacian,
\begin{equation}
\nabla_{flat} \Psi + \frac{\Psi}{4} (\partial_z^2 q + \partial_\rho^2 q) = 0
\end{equation}
If the initial data is chosen to be {\tt
ADMBase::initial\_data = "brilldata2D"} then this elliptic equation
is solved rather than the equation above.


\section{Parameters for the thorn}

The thorn is controlled by the following parameters:

\begin{itemize}

\item brill\_q (INT):  Form of the function $q$ [0,1,2] (default 2):

\begin{itemize}

\item brill\_q = 0:
\[
q = a \; \frac{\rho^{2+b}}{r^2} \left( \frac{z}{\sigma_z} \right)^2
e^{-(\rho - \rho_0^2)}
\]

\item  brill\_q = 1:
\[
q = a \left( \frac{\rho}{\sigma_\rho} \right)^b \frac{1}{1 + \left[
\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}
\]

\item  brill\_q = 2:
\[
q = a \left( \frac{\rho}{\sigma_\rho} \right)^b e^{-\left[
\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}
\]

\item If one specifies 3D data (see above), the function $q$ is multiplied
by an additional factor with an angular dependency:
\[
q \rightarrow q \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
\cos^2 \left( n \phi + \phi_0 \right) \right]
\]

\end{itemize}

\item brill\_a (REAL): Amplitude (default 0.0).

\item brill\_b (REAL):  $b$ in above expressions (default 2.0).

\item brill\_c (REAL):  $c$ in above expressions (default 2.0).

\item brill\_d (REAL):  $d$ in above expressions (default 0.0).

\item brill\_e (REAL):  $e$ in above expressions (default 1.0).

\item brill\_m (REAL):  $m$ in above expressions (default 2.0).

\item brill\_n (REAL):  $n$ in above expressions (default 2.0).

\item brill\_r0 (REAL):  $r_0$ in above expressions (default 0.0).
  
\item brill\_rho0 (REAL):  $\rho_0$ in above expressions
  (default 0.0).
  
\item brill\_phi0 (REAL):  $\phi_0$ in above expressions
  (default 0.0).
  
\item brill\_sr (REAL):  $\sigma_r$ in above expressions
  (default 1.0).
  
\item brill\_srho (REAL):  $\sigma_\rho$ in above
  expressions (default 1.0).
 
\end{itemize}

The elliptic solver is controlled by the additional parameters:

\begin{itemize}
  
\item {\tt solver} (KEYWORD): Elliptic solver used to solve the
  hamiltonian constraint [sor/petsc/bam] (default "sor").
  
\item {\tt thresh} (REAL): Threshold for elliptic solver (default
  0.00001).

\end{itemize}

\section{Notes}

Thorn {\tt IDBrillData} understands both the {\tt physical} and {\tt
static conformal} {\tt metric\_type}. In the case of a conformal
metric being chosen, the conformal factor is set to $\Psi$. Currently
the derivatives of the conformal factor are not calculated, so that
only {\tt staticconformal::conformal\_storage = "factor"} is
supported.

% Automatically created from the ccl files 
% Do not worry for now.

\include{interface}
\include{param}
\include{schedule}

\end{document}