aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/documentation.tex')
-rw-r--r--doc/documentation.tex154
1 files changed, 86 insertions, 68 deletions
diff --git a/doc/documentation.tex b/doc/documentation.tex
index a17be7a..2703ebb 100644
--- a/doc/documentation.tex
+++ b/doc/documentation.tex
@@ -13,9 +13,9 @@ cartesian grid), as well as data with an angular dependency.}
\section{Purpose}
-The purpose of this thorn is to create initial data for a Brill wave
-spacetime. It does so by starting from a three--metric of the form
-originally considered by Brill
+The purpose of this thorn is to create (time symmetric) initial data
+for a Brill wave spacetime. It does so by starting from a
+three--metric of the form originally considered by Brill
\begin{equation}
ds^2 = \Psi^4 \left[ e^{2q} \left( d\rho^2 + dz^2 \right)
+ \rho^2 d\phi^2 \right] =\Psi^4 \hat{ds}^{2},
@@ -25,7 +25,29 @@ where $q$ is a free function subject to certain regularity and
fall-off conditions, $\rho=\sqrt{x^2+y^2}$ and $\Psi$ is a conformal
factor to be solved for.
-Substituting this metric into the Hamiltonian constraint gives an
+Thorn {\tt IDBrillData} provides three choices for the $q$ function:
+an exponential form, ({\tt IDBrillData::q\_function = "exp"})
+\begin{equation}
+q = a \; \frac{\rho^{2+b}}{r^2} \left( \frac{z}{\sigma_z} \right)^2
+e^{-(\rho - \rho_0^2)} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
+\cos^2 \left( n \phi + \phi_0 \right) \right]
+\end{equation}
+a generalized form of the $q$ function first written down by Eppley
+({\tt IDBrillData::q\_function = "eppley"})
+\begin{equation}
+q = a \left( \frac{\rho}{\sigma_\rho} \right)^b \frac{1}{1 + \left[
+\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}\left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
+\cos^2 \left( n \phi + \phi_0 \right) \right]
+\end{equation}
+and the (default) Gundlach $q$ function which includes the Holz form
+({\tt IDBrillData::q\_function = "gundlach"})
+\begin{equation}
+q = a \left( \frac{\rho}{\sigma_\rho} \right)^b e^{-\left[
+\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
+\cos^2 \left( n \phi + \phi_0 \right) \right]
+\end{equation}
+
+Substituting the metric into the Hamiltonian constraint gives an
elliptic equation for the conformal factor $\Psi$ which is then
numerically solved for a given function $q$:
\begin{equation}
@@ -39,14 +61,9 @@ where the conformal Ricci scalar is found to be
Assuming the initial data to be time symmetric means that the momentum
constraints are trivially satisfied.
-The thorn considers several different forms of the function $q$
-depending on certain parameters that will be described below.
-
-Brill initial data is activated by choosing the {\tt CactusEinstein/ADMBase}
-parameter {\tt initial\_data} to be {\tt brilldata}.
-
-In the case of axisymmetry, the Hamiltonian constraint can be written
-as an elliptic equation for $\Psi$ with just the flat space Laplacian,
+In the case of axisymmetry (that is $d=0$ in the above expressions for
+$q$), the Hamiltonian constraint can be written as an elliptic
+equation for $\Psi$ with just the flat space Laplacian,
\begin{equation}
\nabla_{flat} \Psi + \frac{\Psi}{4} (\partial_z^2 q + \partial_\rho^2 q) = 0
\end{equation}
@@ -55,82 +72,60 @@ ADMBase::initial\_data = "brilldata2D"} then this elliptic equation
is solved rather than the equation above.
-\section{Parameters for the thorn}
+\section{Generating Initial Data with IDBrillData}
-The thorn is controlled by the following parameters:
+Brill initial data is activated by choosing the {\tt CactusEinstein/ADMBase}
+parameter {\tt initial\_data} to be {\tt brilldata}, or for the case of
+axisymmetry {\tt brilldata2D} can also be used.
-\begin{itemize}
+The parameter {\tt IDBrillData::q\_function} chooses the form of the
+$q$ function to be used, defaulting to the Gundlach expression.
-\item brill\_q (INT): Form of the function $q$ [0,1,2] (default 2):
+Additional {\tt IDBrillData} parameters for each form of $q$ fix the
+remaining freedom:
\begin{itemize}
-\item brill\_q = 0:
-\[
-q = a \; \frac{\rho^{2+b}}{r^2} \left( \frac{z}{\sigma_z} \right)^2
-e^{-(\rho - \rho_0^2)}
-\]
+\item Exponential $q$: {\tt IDBrillData::q\_function = "exp"}
-\item brill\_q = 1:
-\[
-q = a \left( \frac{\rho}{\sigma_\rho} \right)^b \frac{1}{1 + \left[
-\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}
-\]
+$(a, b,\sigma_z,\rho_0)=$ ({\tt exp\_a, exp\_b, exp\_sigmaz,exp\_rho0})
-\item brill\_q = 2:
-\[
-q = a \left( \frac{\rho}{\sigma_\rho} \right)^b e^{-\left[
-\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}
-\]
+\item Eppley $q$: {\tt IDBrillData::q\_function = "eppley"}
-\item If one specifies 3D data (see above), the function $q$ is multiplied
-by an additional factor with an angular dependency:
-\[
-q \rightarrow q \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
-\cos^2 \left( n \phi + \phi_0 \right) \right]
-\]
+$(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt eppley\_a, eppley\_b, eppley\_sigmarho, eppley\_r0, eppley\_sigmar, eppley\_c})
-\end{itemize}
-
-\item brill\_a (REAL): Amplitude (default 0.0).
-
-\item brill\_b (REAL): $b$ in above expressions (default 2.0).
-
-\item brill\_c (REAL): $c$ in above expressions (default 2.0).
-
-\item brill\_d (REAL): $d$ in above expressions (default 0.0).
+\item Gundlach $q$: {\tt IDBrillData::q\_function = "gundlach"}
-\item brill\_e (REAL): $e$ in above expressions (default 1.0).
+$(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt gundlach\_a, gundlach\_b, gundlach\_sigmarho, gundlach\_r0, gundlach\_sigmar, gundlach\_c})
-\item brill\_m (REAL): $m$ in above expressions (default 2.0).
+\item Non-axisymmetric part for each choice of $q$
-\item brill\_n (REAL): $n$ in above expressions (default 2.0).
+$(d, m, e, n, \phi0)=$ ({\tt brill3d\_d, brill3d\_m, brill3d\_e, brill3d\_n, brill3d\_phi0})
-\item brill\_r0 (REAL): $r_0$ in above expressions (default 0.0).
-
-\item brill\_rho0 (REAL): $\rho_0$ in above expressions
- (default 0.0).
-
-\item brill\_phi0 (REAL): $\phi_0$ in above expressions
- (default 0.0).
-
-\item brill\_sr (REAL): $\sigma_r$ in above expressions
- (default 1.0).
-
-\item brill\_srho (REAL): $\sigma_\rho$ in above
- expressions (default 1.0).
-
\end{itemize}
-The elliptic solver is controlled by the additional parameters:
+Note that the default $q$ expression is
+$$
+q = {\tt gundlach\_a} \quad \rho^2 e^{-r^2}
+$$
+
+{\tt IDBrillData} can use the elliptic solvers (type LinMetric)
+provided by {\tt CactusEinstein/EllSOR}, {\tt AEIThorns/BAM\_Elliptic}
+or {\tt CactusElliptic/EllPETSc} to solve the equation resulting from
+the Hamiltonian constraint.
+In all cases the parameter {\tt thresh} sets the threshold for the elliptic
+solve. The choice of elliptic solver is made
+through the parameter {\tt brill\_solver}:
\begin{itemize}
-\item {\tt solver} (KEYWORD): Elliptic solver used to solve the
- hamiltonian constraint [sor/petsc/bam] (default "sor").
+\item {\tt sor}: Understands the Robin boundary condition, additional
+parameters control the maximum number of iterations ({\tt sor\_maxit}).
-\item {\tt thresh} (REAL): Threshold for elliptic solver (default
- 0.00001).
+\item {\tt bam}: {\tt BAM\_Elliptic} does not properly implement the
+elliptic infrastructure of {\tt EllBase}, and the {\tt BAM\_Elliptic}
+parameter to use the Robin boundary condition must be set independently
+of {tt IDBrillWave::brill\_bound}.
\end{itemize}
@@ -143,6 +138,29 @@ the derivatives of the conformal factor are not calculated, so that
only {\tt staticconformal::conformal\_storage = "factor"} is
supported.
+\section{References}
+
+\subsection{Specification of Brill Waves}
+
+\begin{enumerate}
+
+\item Dieter Brill, {\bf Ann. Phys.}, 7, 466, 1959.
+
+\item Ken Eppley, {\bf Sources of Gravitational Radiation}, edited by L. Smarr (Cambridge University Press,
+Cambridge, England, 1979), p. 275.
+
+\end{enumerate}
+
+\subsection{Numerical Evolutions of Brill Waves}
+
+\begin{enumerate}
+
+\item {\it Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity},
+ Miguel Alcubierre, Gabrielle Allen, Bernd Bruegmann, Gerd Lanfermann, Edward Seidel, Wai-Mo Suen, Malcolm Tobias,
+{\bf Phys. Rev. D61}, 041501, 2000.
+
+\end{enumerate}
+
% Automatically created from the ccl files
% Do not worry for now.