aboutsummaryrefslogtreecommitdiff
path: root/CarpetDev/CarpetJacobi/src/Jacobi.cc
blob: 0f1149918258022396f2d606bf677542cddf17ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <iostream>
#include <vector>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "util_ErrorCodes.h"
#include "util_Table.h"

#include "TATelliptic.h"

#include "carpet.hh"

#include "th.hh"



namespace Carpet {
  // TODO: fix this
  void CycleTimeLevels (const cGH* cctkGH);
  void Restrict (const cGH* cctkGH);
};



#undef restrict
#ifdef CCTK_CXX_RESTRICT
#  define restrict CCTK_CXX_RESTRICT
#endif



#define DEBUG 0                 // either 0 or 1



namespace CarpetJacobi {
  
  using namespace std;
  using namespace Carpet;
  
  
  
  extern "C" {
    int CarpetJacobi_register ();
  }
  
  int CarpetJacobi_solve (const cGH * const cctkGH,
                          const int * const var,
                          const int * const res,
                          const int nvars,
                          const int options_table,
                          const calcfunc calcres,
                          const calcfunc applybnds,
                          void * const userdata);
  
  
  
  int CarpetJacobi_register ()
  {
    int const ierr = TATelliptic_RegisterSolver
      (CarpetJacobi_solve, "CarpetJacobi");
    assert (!ierr);
    return 0;
  }
  
  
  
  int CarpetJacobi_solve (const cGH * const cctkGH,
                          const int * const var,
                          const int * const res,
                          const int nvars,
                          const int options_table,
                          const calcfunc calcres,
                          const calcfunc applybnds,
                          void * const userdata)
  {
    DECLARE_CCTK_PARAMETERS;
    
    // Error control
    int ierr;
    
    if (! CCTK_IsThornActive(CCTK_THORNSTRING)) {
      CCTK_WARN (0, "Thorn " CCTK_THORNSTRING " has not been activated.  It is therefore not possible to call CarpetJacobi_solve.");
    }
    
    // Check arguments
    assert (cctkGH);
    
    assert (nvars > 0);
    assert (var);
    assert (res);
    for (int n=0; n<nvars; ++n) {
      assert (var[n] >= 0 && var[n] < CCTK_NumVars());
      assert (CCTK_GroupTypeFromVarI(var[n]) == CCTK_GF);
      assert (CCTK_GroupDimFromVarI(var[n]) == dim);
      assert (CCTK_VarTypeI(var[n]) == CCTK_VARIABLE_REAL);
      assert (CCTK_QueryGroupStorageI(cctkGH,
                                      CCTK_GroupIndexFromVarI(var[n])));
    }
    for (int n=0; n<nvars; ++n) {
      assert (res[n] >= 0 && res[n] < CCTK_NumVars());
      assert (CCTK_GroupTypeFromVarI(res[n]) == CCTK_GF);
      assert (CCTK_GroupDimFromVarI(res[n]) == dim);
      assert (CCTK_VarTypeI(res[n]) == CCTK_VARIABLE_REAL);
      assert (CCTK_QueryGroupStorageI(cctkGH,
                                      CCTK_GroupIndexFromVarI(res[n])));
    }
    for (int n=0; n<nvars; ++n) {
      assert (var[n] != res[n]);
      for (int nn=0; nn<n; ++nn) {
        assert (var[nn] != var[n]);
        assert (var[nn] != res[n]);
        assert (res[nn] != var[n]);
        assert (res[nn] != res[n]);
      }
    }
    
    
    
    assert (options_table >= 0);
    
    assert (calcres);
    assert (applybnds);
    
    // Get options from options table
    CCTK_INT maxiters = 10000;
    CCTK_REAL minerror = 1e-8;
    CCTK_REAL factor = 1.0e-2;    // slow start
    CCTK_REAL minfactor = 1.0e-8;
    CCTK_REAL maxfactor = 1.0;
    CCTK_REAL acceleration = 1.2; // slow acceleration
    CCTK_REAL deceleration = 0.1; // emergency brake
    vector<CCTK_REAL> factors (nvars);
    for (int n=0; n<nvars; ++n) {
      factors[n] = 1.0;
    }
    
    ierr = Util_TableGetInt (options_table, &maxiters, "maxiters");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &minerror, "minerror");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &factor, "factor");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &minfactor, "minfactor");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &maxfactor, "maxfactor");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &acceleration, "acceleration");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetReal (options_table, &deceleration, "deceleration");
    assert (ierr==1 || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    ierr = Util_TableGetRealArray (options_table,
                                   nvars, &factors[0], "factors");
    assert (ierr==nvars || ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY);
    
    assert (maxiters >= 0);
    assert (minerror >= 0);
    assert (factor > 0);
    assert (minfactor > 0 && minfactor <= factor);
    assert (maxfactor >= factor);
    assert (acceleration >= 1);
    assert (deceleration > 0 && deceleration <= 1);
    for (int n=0; n<nvars; ++n) {
      assert (factors[n] != 0);
    }
    
    
    
    assert (is_global_mode() || is_level_mode());
    
    // The level to solve on
    const int solve_level = is_level_mode() ? reflevel : reflevels-1;
    
    if (solve_level < solve_minlevel) {
      if (verbose || veryverbose) {
        CCTK_VInfo (CCTK_THORNSTRING,
                    "Did not solve because the level is too coarse.");
      }
      Util_TableSetInt (options_table, 0, "iters");
      Util_TableSetReal (options_table, -1.0, "error");
      
      // Return as if the solving had not converged
      return -1;
    }
    
#warning "TODO: assert that all levels are at the same time"
    
    // Switch to global mode
    BEGIN_GLOBAL_MODE(cctkGH) {
      
      // Reset the initial data time
      global_time = 0;
      delta_time = 1;
      * const_cast<CCTK_REAL *> (& cctkGH->cctk_time) = global_time;
      * const_cast<CCTK_REAL *> (& cctkGH->cctk_delta_time) = delta_time;
      BEGIN_REFLEVEL_LOOP(cctkGH) {
        * const_cast<CCTK_REAL *> (& cctkGH->cctk_time) = global_time;
        for (int m=0; m<maps; ++m) {
          vtt[m]->set_time (reflevel, mglevel, 0);
          vtt[m]->set_delta
            (reflevel, mglevel,
             1.0 / ipow (maxval (spacereflevelfact), reflevelpower));
        }
      } END_REFLEVEL_LOOP;
      
      
      
      // Init statistics
      vector<CCTK_REAL> norm_counts (solve_level+1);
      vector<CCTK_REAL> norm_l2s (solve_level+1);
      CCTK_REAL norm2 = HUGE_VAL;
      CCTK_REAL speed = 0.0;
      CCTK_REAL throttle = 1.0;
      bool did_hit_min = false;
      bool did_hit_max = false;
      const time_t starttime = time(0);
      time_t nexttime = starttime;
      
      if (verbose || veryverbose) {
        CCTK_VInfo (CCTK_THORNSTRING,
                    "Solving through adaptive Jacobi iterations");
      }
      
      const int icoarsestep
        = ipow (mglevelfact * maxval (maxspacereflevelfact), reflevelpower);
      const int istep
        = ipow (mglevelfact
                * maxval (maxspacereflevelfact / spacereffacts.at(solve_level)),
                reflevelpower);
      int iter = istep;
      for (;; iter+=istep) {
        
        global_time
          = 1.0 * iter / ipow (maxval (maxspacereflevelfact), reflevelpower);
        * const_cast<CCTK_REAL *> (& cctkGH->cctk_time) = global_time;
        if (DEBUG) cout << "CJ global iter " << iter << " time " << global_time << flush << endl;
        
        // Calculate residual, smooth, and apply boundary conditions
        ierr = 0;
        BEGIN_REFLEVEL_LOOP(cctkGH) {
          const int do_every
            = ipow (mglevelfact
                    * maxval (maxspacereflevelfact / spacereflevelfact),
                    reflevelpower);
          if (reflevel <= solve_level && (iter-istep) % do_every == 0) {
            
            // Advance time
            for (int m=0; m<maps; ++m) {
              vtt[m]->advance_time (reflevel, mglevel);
            }
            * const_cast<CCTK_REAL *> (& cctkGH->cctk_time)
              = (1.0 * (iter - istep + do_every)
                 / ipow (maxval (maxspacereflevelfact), reflevelpower));
            CycleTimeLevels (cctkGH);
            if (DEBUG) cout << "CJ residual iter " << iter << " reflevel " << reflevel << " time " << cctkGH->cctk_time << flush << endl;
            
            // Advance time levels
            BEGIN_MAP_LOOP(cctkGH, CCTK_GF) {
              BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
                for (int n=0; n<nvars; ++n) {
                  if (CCTK_ActiveTimeLevelsVI(cctkGH, var[n]) > 1) {
                    size_t npoints = 1;
                    for (int d=0; d<cctkGH->cctk_dim; ++d) {
                      npoints *= cctkGH->cctk_lsh[d];
                    }
                    memcpy (CCTK_VarDataPtrI (cctkGH, 0, var[n]),
                            CCTK_VarDataPtrI (cctkGH, 1, var[n]),
                            npoints * sizeof(CCTK_REAL));
                  }
                } // for n
              } END_LOCAL_COMPONENT_LOOP;
            } END_MAP_LOOP;
            
            // Calculate residual
            BEGIN_MAP_LOOP(cctkGH, CCTK_GF) {
              BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
                if (! ierr) {
                  ierr = calcres (cctkGH, options_table, userdata);
                }
              } END_LOCAL_COMPONENT_LOOP;
            } END_MAP_LOOP;
            
            // Smooth and apply boundary conditions
            BEGIN_MAP_LOOP(cctkGH, CCTK_GF) {
              
              CCTK_REAL levfac = 0;
              for (int d=0; d<dim; ++d) {
                CCTK_REAL const delta
                  = cctkGH->cctk_delta_space[d] / cctkGH->cctk_levfac[d];
                levfac += 1 / ipow (delta, 2);
              }
              levfac = 1 / levfac;
              
              BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
                if (! ierr) {
                  
                  for (int n=0; n<nvars; ++n) {
                    CCTK_REAL * restrict varptr
                      = (CCTK_REAL *)CCTK_VarDataPtrI (cctkGH, 0, var[n]);
                    assert (varptr);
                    const CCTK_REAL * restrict resptr
                      = (const CCTK_REAL *)CCTK_VarDataPtrI(cctkGH, 0, res[n]);
                    assert (resptr);
                    assert (resptr != varptr);
                    const CCTK_REAL fac = factor * factors[n] * levfac;
                    if (DEBUG) cout << "CJ    smoothing fac=" << fac << endl;
                    assert (cctkGH->cctk_dim == 3);
                    for (int k=cctkGH->cctk_nghostzones[2];
                         k<cctkGH->cctk_lsh[2]-cctkGH->cctk_nghostzones[2];
                         ++k) {
                      for (int j=cctkGH->cctk_nghostzones[1];
                           j<cctkGH->cctk_lsh[1]-cctkGH->cctk_nghostzones[1];
                           ++j) {
                        for (int i=cctkGH->cctk_nghostzones[0];
                             i<cctkGH->cctk_lsh[0]-cctkGH->cctk_nghostzones[0];
                             ++i) {
                          const int ind = CCTK_GFINDEX3D(cctkGH, i, j, k);
                          varptr[ind] += fac * resptr[ind];
                        }
                      }
                    }
                  } // for n
                  
#if 1
                  // Apply boundary conditions
                  ierr = applybnds (cctkGH, options_table, userdata);
#endif
                  
                } // if ! ierr
              } END_LOCAL_COMPONENT_LOOP;
            } END_MAP_LOOP;
            
#if 0
            // Apply boundary conditions
            ierr = applybnds (cctkGH, options_table, userdata);
            int const ierr2 = CallScheduleGroup (cctkGH, "ApplyBCs");
            
#endif

          } // if do_every
        } END_REFLEVEL_LOOP;
        
        if (ierr) {
          if (verbose || veryverbose) {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Residual calculation or boundary conditions reported error; aborting solver.");
          }
          Util_TableSetInt (options_table, iter, "iters");
          Util_TableDeleteKey (options_table, "error");
          goto done;
        }
        
        // Restrict and calculate norm
        ierr = 0;
        BEGIN_REVERSE_REFLEVEL_LOOP(cctkGH) {
          const int do_every
            = ipow (mglevelfact
                    * maxval (maxspacereflevelfact / spacereflevelfact),
                    reflevelpower);
          if (reflevel <= solve_level && iter % do_every == 0) {
            
            if (DEBUG) cout << "CJ restrict iter " << iter << " reflevel " << reflevel << " time " << cctkGH->cctk_time << flush << endl;
            
            if (! ierr) {
              if (reflevel < solve_level) {
                Restrict (cctkGH);
              }
            }
            
            BEGIN_MAP_LOOP(cctkGH, CCTK_GF) {
              BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
                if (! ierr) {
                  ierr = applybnds (cctkGH, options_table, userdata);
                }
              } END_LOCAL_COMPONENT_LOOP;
            } END_MAP_LOOP;
            
            // Initialise norm
            CCTK_REAL norm_count = 0;
            CCTK_REAL norm_l2 = 0;
            
            BEGIN_MAP_LOOP(cctkGH, CCTK_GF) {
              BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
                if (! ierr) {
                  
                  // Calculate norm
                  for (int n=0; n<nvars; ++n) {
                    const CCTK_REAL * restrict resptr
                      = (const CCTK_REAL *)CCTK_VarDataPtrI(cctkGH, 0, res[n]);
                    assert (resptr);
                    const CCTK_REAL fac = factors[n];
                    if (DEBUG) cout << "CJ    norm fac=" << fac << endl;
                    assert (cctkGH->cctk_dim == 3);
                    for (int k=cctkGH->cctk_nghostzones[2];
                         k<cctkGH->cctk_lsh[2]-cctkGH->cctk_nghostzones[2];
                         ++k) {
                      for (int j=cctkGH->cctk_nghostzones[1];
                           j<cctkGH->cctk_lsh[1]-cctkGH->cctk_nghostzones[1];
                           ++j) {
                        for (int i=cctkGH->cctk_nghostzones[0];
                             i<cctkGH->cctk_lsh[0]-cctkGH->cctk_nghostzones[0];
                             ++i) {
                          const int ind = CCTK_GFINDEX3D(cctkGH, i, j, k);
                          ++norm_count;
                          // TODO: scale the norm by the resolution?
                          norm_l2 += ipow(fac * resptr[ind], 2);
                        }
                      }
                    }
                    if (DEBUG) cout << "CJ    norm=" << norm_l2 << endl;
                  } // for n
                  
                }
              } END_LOCAL_COMPONENT_LOOP;
            } END_MAP_LOOP;
            
            const int sum_handle = CCTK_ReductionArrayHandle ("sum");
            assert (sum_handle >= 0);
            CCTK_REAL reduce_in[2], reduce_out[2];
            reduce_in[0] = norm_count;
            reduce_in[1] = norm_l2;
            ierr = CCTK_ReduceLocArrayToArray1D
              (cctkGH, -1, sum_handle, reduce_in, reduce_out, 2,
               CCTK_VARIABLE_REAL);
            norm_counts.at(reflevel) = reduce_out[0];
            norm_l2s.at(reflevel) = reduce_out[1];
            
#warning "TODO"
#if 0
            CCTK_OutputVarAs (cctkGH, "WaveToyFO::phi", "phi-ell");
            CCTK_OutputVarAs (cctkGH, "IDSWTEsimpleFO::residual", "residual-ell");
#endif
            
          }
        } END_REVERSE_REFLEVEL_LOOP;
        
        if (ierr) {
          if (verbose || veryverbose) {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Residual calculation or boundary conditions reported error; aborting solver.");
          }
          Util_TableSetInt (options_table, iter, "iters");
          Util_TableDeleteKey (options_table, "error");
          goto done;
        }
        
        // Save old norm
        const CCTK_REAL old_norm2 = norm2;
        
        // Calculate new norm
        CCTK_REAL norm_count = 0;
        CCTK_REAL norm_l2 = 0;
        for (int rl=0; rl<=solve_level; ++rl) {
          norm_count += norm_counts[rl];
          norm_l2 += norm_l2s[rl];
        }
        norm2 = sqrt(norm_l2 / norm_count);
        
        // Calculate convergence speed
        speed = old_norm2 / norm2;
        
        // Log output
        if (verbose || veryverbose) {
          const time_t currenttime = time(0);
          if ((iter % icoarsestep == 0 && iter >= maxiters)
#if HAVE_ISNAN
              || isnan(norm2)
#endif
              || norm2 <= minerror
              || (iter % outevery == 0 && currenttime >= nexttime)) {
            if (verbose || veryverbose) {
              if (did_hit_min) {
                CCTK_VInfo (CCTK_THORNSTRING,
                            "Convergence factor became too small: artificially kept at minfactor (may lead to instability)");
              }
              if (did_hit_max) {
                CCTK_VInfo (CCTK_THORNSTRING,
                            "Convergence factor became too large: artificially kept at maxfactor (may lead to slower convergence)");
              }
              did_hit_min = false;
              did_hit_max = false;
            }
            if (veryverbose) {
              CCTK_VInfo (CCTK_THORNSTRING,
                          "Iteration %d, time %g, factor %g, throttle %g, residual %g, speed %g",
                          iter, double(currenttime-starttime),
                          double(factor), double(throttle), double(norm2),
                          double(speed));
            } else {
              CCTK_VInfo (CCTK_THORNSTRING,
                          "Iteration %d, time %g, residual %g",
                          iter, double(currenttime-starttime), double(norm2));
            }
            if (outeveryseconds > 0) {
              while (nexttime <= currenttime) nexttime += outeveryseconds;
            }
          }
        }
        
#if HAVE_ISNAN
        // Exit if things go bad
        if (isnan(norm2)) {
          if (verbose || veryverbose) {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Encountered NaN.  Aborting solver.");
          }
          break;
        }
#endif
        
        // Return when desired accuracy is reached
        if (norm2 <= minerror) {
          if (verbose || veryverbose) {
            CCTK_VInfo (CCTK_THORNSTRING, "Done solving.");
          }
          Util_TableSetInt (options_table, iter, "iters");
          Util_TableSetReal (options_table, norm2, "error");
          ierr = 0;
          goto done;
        }
        
        // Exit if the maximum number of iterations has been reached
        if (iter % icoarsestep == 0 && iter >= maxiters) {
          break;
        }
        
        // Adjust speed
        if (speed > 1.0) {
          throttle = acceleration;
        } else {
          throttle = deceleration;
        }
        factor *= throttle;
        if (factor < minfactor) {
          did_hit_min = true;
          factor = minfactor;
        }
        if (factor > maxfactor) {
          did_hit_max = true;
          factor = maxfactor;
        }
        
      } // for iter
      
      // Did not solve
      if (verbose || veryverbose) {
        CCTK_VInfo (CCTK_THORNSTRING, "Did not converge.");
      }
      Util_TableSetInt (options_table, iter, "iters");
      Util_TableSetReal (options_table, norm2, "error");
      ierr = -1;
    
    done: ;
      
      
      
      // Reset the initial time
#warning "TODO: reset the initial time a bit more intelligently"
      global_time = 0;
      delta_time = 1;
      * const_cast<CCTK_REAL *> (& cctkGH->cctk_time) = global_time;
      * const_cast<CCTK_REAL *> (& cctkGH->cctk_delta_time) = delta_time;
      BEGIN_REFLEVEL_LOOP(cctkGH) {
        * const_cast<CCTK_REAL *> (& cctkGH->cctk_time) = global_time;
        for (int m=0; m<maps; ++m) {
          vtt[m]->set_time (reflevel, mglevel, 0);
          vtt[m]->set_delta (reflevel, mglevel, 1.0 / timereflevelfact);
        }
      } END_REFLEVEL_LOOP;
      
    } END_GLOBAL_MODE;
    
    return ierr;
  }

} // namespace CarpetJacobi