aboutsummaryrefslogtreecommitdiff
path: root/CarpetDev/CarpetAdaptiveRegrid/src/CAR.cc
blob: eb18a5ca6364e84db2d9464dbb040faac917e0b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#include <cassert>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <stack>

#include "cctk.h"
#include "cctk_Parameters.h"

#include "gh.hh"
#include "vect.hh"

#include "carpet.hh"
#include "CAR.hh"

extern "C" {
  static const char* rcsid = "$Header:$";
  CCTK_FILEVERSION(Carpet_CarpetAdaptiveregrid_regrid_cc);
}



namespace CarpetAdaptiveRegrid {
  
  using namespace std;
  using namespace Carpet;

  static gh::mexts local_bbsss;

  extern "C" {
    void CCTK_FCALL CCTK_FNAME(copy_mask)
      (const CCTK_INT& snx, const CCTK_INT& sny, const CCTK_INT& snz,
       const CCTK_INT* smask, const CCTK_INT sbbox[3][3],
       const CCTK_INT& dnx, const CCTK_INT& dny, const CCTK_INT& dnz,
       CCTK_INT* dmask, const CCTK_INT dbbox[3][3]);
    void CCTK_FCALL CCTK_FNAME(check_box)
      (const CCTK_INT& nx, const CCTK_INT& ny, const CCTK_INT& nz,
       const CCTK_INT* mask,
       CCTK_INT* sum_x, CCTK_INT* sum_y, CCTK_INT* sum_z,
       CCTK_INT* sig_x, CCTK_INT* sig_y, CCTK_INT* sig_z,
       const CCTK_INT bbox[3][3],
       CCTK_INT newbbox1[3][3], CCTK_INT newbbox2[3][3],
       const CCTK_INT& min_width, const CCTK_REAL& min_fraction,
       CCTK_INT& didit);
  }

  ivect pos2int (const cGH* const cctkGH, const gh& hh,
                 const rvect & rpos, const int rl);
  rvect int2pos (const cGH* const cctkGH, const gh& hh,
                 const ivect & ipos, const int rl);
  
  CCTK_INT CarpetAdaptiveRegrid_Regrid (CCTK_POINTER_TO_CONST const cctkGH_,
                                CCTK_POINTER const bbsss_,
                                CCTK_POINTER const obss_,
                                CCTK_POINTER const pss_,
				CCTK_INT force)
  {
    DECLARE_CCTK_PARAMETERS;
    
    const cGH * const cctkGH = (const cGH *) cctkGH_;
    
    gh::mexts  & bbsss = * (gh::mexts  *) bbsss_;
    gh::rbnds  & obss  = * (gh::rbnds  *) obss_;
    gh::rprocs & pss   = * (gh::rprocs *) pss_;
    
    gh const & hh = *vhh.at(Carpet::map);
    
    assert (is_singlemap_mode());

    if (local_bbsss.empty()) { // It's the first call
      // Is this really the right thing to do on 
      // multiprocessors?
      local_bbsss = bbsss;
    }

    // FIXME: We should check that the local reflevel "agrees"
    // with what is passed in.
    
    // In force mode (force == true) we do not check the
    // CarpetAdaptiveregrid parameters

    if (!force) {

      assert (regrid_every == -1 || regrid_every == 0
	      || regrid_every % maxmglevelfact == 0);
    
      // Return if no regridding is desired
      if (regrid_every == -1) return 0;
      
      // Return if we want to regrid during initial data only, and this
      // is not the time for initial data
      if (regrid_every == 0 && cctkGH->cctk_iteration != 0) return 0;

      // Return if we want to regrid regularly, but not at this time
      if (regrid_every > 0 && cctkGH->cctk_iteration != 0
	  && (cctkGH->cctk_iteration-1) % regrid_every != 0)
      {
	return 0;
      }

      // Return if it's initial data as we can't handle that yet.
      if (cctkGH->cctk_iteration ==0) {
        return 0;
      }

    }    

    if (reflevel == maxreflevels - 1) return 0;

//     cout << "bbsss at start" << endl << bbsss << endl;
//     cout << "obss at start" << endl << obss << endl;
//     cout << "pss at start" << endl << pss << endl;

    CCTK_INT do_recompose;
    do_recompose = 1;

    // We assume that we are called in fine->coarse order
    // So that on finer levels regridding has already been done

    // So the full algorithm should look something like:

    // Find how big the first bounding box should be on this level
    //   Do this by finding min lower and max upper bounds of all bboxes
    // Allocate box
    // Fill errors from local arrays
    // If grandchildren exist use their bboxes (expanded) to add to errors
    // Reduce errors (MPI sum)
    // Set errors to 0/1
    // Define vectors of bboxes final (empty) and todo (contains bbox)
    // Define vector of masks (contains error mask)
    // Loop over all entries in todo:
    //   Setup appropriate 1d array memory
    //   Call fortran routine
    //   If return is:
    //     zero: add bbox to final
    //     one:  add new bbox to todo and assoc mask to masklist
    //     two:  add both new bboxs to todo and assoc masks to masklist
    //   

    vector<ibbox> bbs = local_bbsss.at(mglevel).at(reflevel);
    
    stack<ibbox> final;

    vector<vector<ibbox> > bbss = local_bbsss.at(0);
      
    //    ivect low = 100000, upp = -1;

    bool did_regrid = false;

    rvect physical_min, physical_max;
    rvect interior_min, interior_max;
    rvect exterior_min, exterior_max;
    rvect base_spacing;
    int ierr = GetDomainSpecification
      (dim, &physical_min[0], &physical_max[0],
       &interior_min[0], &interior_max[0],
       &exterior_min[0], &exterior_max[0], &base_spacing[0]);
    assert (!ierr);

    for ( vector<ibbox>::const_iterator bbi = bbs.begin(); 
          bbi != bbs.end();
          ++bbi) 
    {
      //      low = min(low, bbi->lower());
      //      upp = max(upp, bbi->upper());
      //    }
    
      ivect low = bbi->lower();
      ivect upp = bbi->upper();
      
      // low and upp now define the starting bbox.

      ibbox bb(low, upp, bbs.at(0).stride());
    
      if (verbose) {
        ostringstream buf;
        buf << "Found the local size of the box: " << endl << bb;
        CCTK_INFO(buf.str().c_str());
      }
      
      vector<CCTK_INT> mask(prod(bb.shape()/bb.stride()), 0);
      
      if (veryverbose) {
        ostringstream buf;
        buf << "Allocated mask size: " << bb.shape()/bb.stride() 
            << " (points: " << prod(bb.shape()/bb.stride()) << ")";
        CCTK_INFO(buf.str().c_str());
      }
      

      // Setup the mask.
      
      const ibbox& baseext = 
        vdd.at(Carpet::map)->bases.at(mglevel).at(reflevel).exterior;
      ivect imin = (bb.lower() - baseext.lower())/bb.stride(), 
        imax = (bb.upper() - baseext.lower())/bb.stride();

      BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) 
      {
        const CCTK_REAL *error_var_ptr = 
          static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 0, error_var));
        const CCTK_REAL *x_var_ptr = 
          static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 0, "Grid::x"));
        const CCTK_REAL *y_var_ptr = 
          static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 0, "Grid::y"));
        const CCTK_REAL *z_var_ptr = 
          static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 0, "Grid::z"));
     
        assert(all(imin >= 0));
        assert(all(imax >= 0));
        // FIXME: Why should the following assert be true?
        //      assert(all(imax < ivect::ref(cctkGH->cctk_lsh)));
        assert(all(imin <= imax));
      
        for (CCTK_INT k = 0; k < cctkGH->cctk_lsh[2]; ++k) {
          for (CCTK_INT j = 0; j < cctkGH->cctk_lsh[1]; ++j) {
            for (CCTK_INT i = 0; i < cctkGH->cctk_lsh[0]; ++i) {
              CCTK_INT index = CCTK_GFINDEX3D(cctkGH, i, j, k);
              if (abs(error_var_ptr[index]) > max_error) {
                CCTK_INT ii = i + cctkGH->cctk_lbnd[0] - imin[0];
                CCTK_INT jj = j + cctkGH->cctk_lbnd[1] - imin[1];
                CCTK_INT kk = k + cctkGH->cctk_lbnd[2] - imin[2];
                // Check that this point actually intersects with 
                // this box (if this component was actually a
                // different grid on the same processor, it need not)
                if ( (ii >= 0) and (jj >= 0) and (kk >= 0) and 
                     (ii <= imax[0] - imin[0]) and
                     (jj <= imax[1] - imin[1]) and
                     (kk <= imax[2] - imin[2]) )
                {
                  assert (ii >= 0);
                  assert (jj >= 0);
                  assert (kk >= 0);
                  assert (ii <= imax[0] - imin[0]);
                  assert (jj <= imax[1] - imin[1]);
                  assert (kk <= imax[2] - imin[2]);
                  CCTK_INT mindex = ii + 
                    (imax[0] - imin[0] + 1)*(jj + (imax[1] - imin[1] + 1) * kk);
                  mask[mindex] = 1;
                  if (veryverbose) {
                    CCTK_VInfo(CCTK_THORNSTRING, "In error at point"
                               "\n(%g,%g,%g) [%d,%d,%d] [[%d,%d,%d]]",
                               x_var_ptr[index],
                               y_var_ptr[index],
                               z_var_ptr[index],
                               ii, jj, kk, i,j,k);
                  }
                }
              }
            }
          }
        }
      } END_LOCAL_COMPONENT_LOOP;
      
      // FIXME    
      // If grandchildren exist use their bboxes (expanded) to add to errors
      // Reduce errors (MPI sum)
      // Set errors to 0/1

      // Pad the errors: stage 1 - buffer points marked as 2.

      for (CCTK_INT k = 0; k < imax[2] - imin[2]; k++) {
        for (CCTK_INT j = 0; j < imax[1] - imin[1]; j++) {
          for (CCTK_INT i = 0; i < imax[0] - imin[0]; i++) {
            CCTK_INT index =  i + 
              (imax[0] - imin[0] + 1)*(j + (imax[1] - imin[1] + 1) * k);
            if (mask[index] == 1) {
              for (CCTK_INT kk = max(k-pad, 0); 
                   kk < min(k+pad+1, imax[2] - imin[2]);
                   ++kk)
              {
                for (CCTK_INT jj = max(j-pad, 0); 
                     jj < min(j+pad+1, imax[1] - imin[1]);
                     ++jj)
                {
                  for (CCTK_INT ii = max(i-pad, 0); 
                       ii < min(i+pad+1, imax[0] - imin[0]);
                       ++ii)
                  {
                    CCTK_INT mindex = ii + 
                      (imax[0] - imin[0] + 1)*
                      (jj + (imax[1] - imin[1] + 1) * kk);
                    if (!mask[mindex]) mask[mindex] = 2;
                  }
                }
              }
            }
          }
        }
      }
      // stage 2: all buffer points marked truly in error.
      // Also mark if there are any errors.
      bool should_regrid = false;
      for (CCTK_INT k = 0; k < imax[2] - imin[2]; k++) {
        for (CCTK_INT j = 0; j < imax[1] - imin[1]; j++) {
          for (CCTK_INT i = 0; i < imax[0] - imin[0]; i++) {
            CCTK_INT index =  i + 
              (imax[0]-imin[0] + 1)*(j + (imax[1] - imin[1] + 1) * k);
            if (mask[index] > 1) mask[index] = 1;
            if ((veryverbose) and (mask[index])) {
              CCTK_VInfo(CCTK_THORNSTRING, "Mask set at point"
                         "\n[%d,%d,%d]",
                         i,j,k);
            } 
            should_regrid |= (mask[index]);
            did_regrid |= should_regrid;
          }
        }
      }    
      
      // Define vectors of bboxes final (empty) and todo (contains bbox)

      if (should_regrid) {
    
        stack<ibbox> todo;
        
        todo.push(bb);
        
        // Define vector of masks (contains error mask)
        
        stack<vector<CCTK_INT> > masklist;
        
        masklist.push(mask);
        
        // Loop over all entries in todo:
        //   Setup appropriate 1d array memory
        //   Call fortran routine
        //   If return is:
        //     zero: add bbox to final
        //     one:  add new bbox to todo and assoc mask to masklist
        //     two:  add both new bboxs to todo and assoc masks to masklist
        
        while (!todo.empty())
        {
          
          ibbox bb = todo.top(); todo.pop();
          vector<CCTK_INT> mask = masklist.top(); masklist.pop();
          
          CCTK_INT nx = bb.shape()[0]/bb.stride()[0];
          CCTK_INT ny = bb.shape()[1]/bb.stride()[1];
          CCTK_INT nz = bb.shape()[2]/bb.stride()[2];
          
          if (verbose) {
            ostringstream buf;
            buf << "todo loop. Box: " << endl << bb;
            CCTK_INFO(buf.str().c_str());
          }
          
          vector<CCTK_INT> sum_x(nx, 0);
          vector<CCTK_INT> sig_x(nx, 0);
          vector<CCTK_INT> sum_y(ny, 0);
          vector<CCTK_INT> sig_y(ny, 0);
          vector<CCTK_INT> sum_z(nz, 0);
          vector<CCTK_INT> sig_z(nz, 0);
          
          CCTK_INT fbbox[3][3], fbbox1[3][3], fbbox2[3][3];
          
          for (CCTK_INT d = 0; d < 3; ++d) {
            fbbox[0][d] = bb.lower()[d];
            fbbox[1][d] = bb.upper()[d];
            fbbox[2][d] = bb.stride()[d];
          }
          
          CCTK_INT didit;
          
          CCTK_FNAME(check_box)(nx, ny, nz,
                                &mask.front(),
                                &sum_x.front(), &sum_y.front(), &sum_z.front(),
                                &sig_x.front(), &sig_y.front(), &sig_z.front(),
                                fbbox,
                                fbbox1, fbbox2,
                                min_width, min_fraction,
                                didit);
          
          if (didit == 0) {
          
            final.push(bb);          

            if (verbose) {
              ostringstream buf;
              buf << "todo loop. Box pushed to final: " 
                  << endl << bb;
              CCTK_INFO(buf.str().c_str());
            }
          }
          else if (didit == 1) {
            
            ibbox newbbox1(ivect::ref(&fbbox1[0][0]),
                           ivect::ref(&fbbox1[1][0]),
                           ivect::ref(&fbbox1[2][0]));
            todo.push(newbbox1);
            
            CCTK_INT dnx = newbbox1.shape()[0]/newbbox1.stride()[0];
            CCTK_INT dny = newbbox1.shape()[1]/newbbox1.stride()[1];
            CCTK_INT dnz = newbbox1.shape()[2]/newbbox1.stride()[2];
            
            vector<CCTK_INT>  
              newmask1(prod(newbbox1.shape()/newbbox1.stride()), 0);
            
            CCTK_FNAME(copy_mask)(nx, ny, nz,
                                  &mask.front(), fbbox,
                                  dnx, dny, dnz,
                                  &newmask1.front(), fbbox1);
            masklist.push(newmask1);
            
            if (verbose) {
              ostringstream buf;
              buf << "todo loop. New (single) box created: " 
                  << endl << newbbox1;
              CCTK_INFO(buf.str().c_str());
            }
          }
          else if (didit == 2) {
            
            ibbox newbbox1(ivect::ref(&fbbox1[0][0]),
                           ivect::ref(&fbbox1[1][0]),
                           ivect::ref(&fbbox1[2][0]));
            todo.push(newbbox1);
            ibbox newbbox2(ivect::ref(&fbbox2[0][0]),
                           ivect::ref(&fbbox2[1][0]),
                           ivect::ref(&fbbox2[2][0]));
            todo.push(newbbox2);
            
            CCTK_INT dnx = newbbox1.shape()[0]/newbbox1.stride()[0];
            CCTK_INT dny = newbbox1.shape()[1]/newbbox1.stride()[1];
            CCTK_INT dnz = newbbox1.shape()[2]/newbbox1.stride()[2];
            
            vector<CCTK_INT>  
              newmask1(prod(newbbox1.shape()/newbbox1.stride()), 0);
            
            CCTK_FNAME(copy_mask)(nx, ny, nz,
                                  &mask.front(), fbbox,
                                  dnx, dny, dnz,
                                  &newmask1.front(), fbbox1);
            masklist.push(newmask1);
            
            dnx = newbbox2.shape()[0]/newbbox2.stride()[0];
            dny = newbbox2.shape()[1]/newbbox2.stride()[1];
            dnz = newbbox2.shape()[2]/newbbox2.stride()[2];
            
            vector<CCTK_INT>  
              newmask2(prod(newbbox2.shape()/newbbox2.stride()), 0);
            
            CCTK_FNAME(copy_mask)(nx, ny, nz,
                                  &mask.front(), fbbox,
                                  dnx, dny, dnz,
                                  &newmask2.front(), fbbox2);
            masklist.push(newmask2);
            
            if (verbose) {
              ostringstream buf;
              buf << "todo loop. New (double) box created. Box 1: " 
                  << endl << newbbox1
                  << "                                     Box 2: "
                  << endl << newbbox2;
              CCTK_INFO(buf.str().c_str());
            }
          }
          else {
            CCTK_WARN(0, "The fortran routine must be confused.");
          }
          
        } // loop over todo vector (boxes needing to be done).
      } // should regrid.
    } // Loop over boxes on the parent grid.

    if (did_regrid) {

      // Fixup the stride
      vector<ibbox> newbbs;
      vector<bbvect> obs;
      while (! final.empty()) {
        ibbox bb = final.top(); final.pop();
        ivect ilo = bb.lower();
        ivect ihi = bb.upper();
        rvect lo = int2pos(cctkGH, hh, ilo, reflevel);
        rvect hi = int2pos(cctkGH, hh, ihi, reflevel);
        rvect str = base_spacing * 
          ipow((CCTK_REAL)mgfact, basemglevel) / ipow(reffact, reflevel);
        rbbox newbbcoord(lo, hi, str);
        
        if (veryverbose) {
          ostringstream buf;
          buf << "Dealing with boundaries. Coord box is:"
              << endl << newbbcoord;
          CCTK_INFO(buf.str().c_str());
        }
        
        // FIXME: Set the correct ob here.
        
        bbvect ob(false);
        for (int d=0; d<dim; ++d) {
          assert (mglevel==0);
          
          // Find the size of the physical domain
          
          rvect const spacing = base_spacing * 
            ipow((CCTK_REAL)mgfact, basemglevel) / ipow(reffact, reflevel+1);
          ierr = ConvertFromPhysicalBoundary
            (dim, &physical_min[0], &physical_max[0],
             &interior_min[0], &interior_max[0],
             &exterior_min[0], &exterior_max[0], &spacing[0]);
          assert (!ierr);
          
          // If need be clip the domain
          
          rvect lo = newbbcoord.lower();
          if (newbbcoord.lower()[d] < physical_min[d]) {
            lo[d] = exterior_min[d];
          }
          rvect up = newbbcoord.upper();
          if (newbbcoord.upper()[d] > physical_max[d]) {
            up[d] = exterior_max[d];
          }
          rvect str = newbbcoord.stride();
          
          // Set the ob if outside the physical domain
          
          ob[d][0] = 
            abs(lo[d] - exterior_min[d]) < 1.0e-6 * spacing[d];
          ob[d][1] = 
            abs(up[d] - exterior_max[d]) < 1.0e-6 * spacing[d];
          
          newbbcoord = rbbox(lo, up, str);
        }
        if (verbose) {
          ostringstream buf;
          buf << "Done dealing with boundaries. Coord box is:"
              << endl << newbbcoord << endl
              << "obox is:" << endl << ob;
          CCTK_INFO(buf.str().c_str());
        }
        
        // Convert back to integer coordinates
        // We have to do this on the fine grid to ensure that
        // it is correct for an outer boundary with odd numbers
        // of ghost zones where the bbox does not align with the parent.
        
        ilo = pos2int(cctkGH, hh, newbbcoord.lower(), reflevel+1);
        ihi = pos2int(cctkGH, hh, newbbcoord.upper(), reflevel+1);
        ivect istr = bb.stride() / reffact;
        
        // Check that the width is sufficient
        // This can only be too small if the domain was clipped
        for (int d=0; d < dim; ++d) {
          if (ihi[d] - ilo[d] < min_width * istr[d]) {
            if (ob[d][0]) {
              if (ob[d][1]) {
                CCTK_WARN(0, "The domain is too small?!");
              }
              ihi[d] = ilo[d] + min_width * istr[d];
            }
            else if (ob[d][1]) {
              if (ob[d][0]) {
                CCTK_WARN(0, "The domain is too small?!");
              }
              ilo[d] = ihi[d] - min_width * istr[d];
            }
            else {
              CCTK_WARN(0, "The grid is unclipped and too small?!");
            }
          }
        }
        
        ibbox newbb(ilo, ihi, istr);          
        
        if (verbose) {
          ostringstream buf;
          buf << "After dealing with boundaries. Final box is:"
              << endl << newbb;
          CCTK_INFO(buf.str().c_str());
        }
        
        newbbs.push_back (newbb);
        obs.push_back(ob);
      }
      
      
      // FIXME: check if the newbbs is really different from the current bbs
      //        if not, set do_recompose = 0
      bbs = newbbs;
      
      // Set local bbss
      
      if (bbss.size() < reflevel+2) {
        if (verbose) {
          CCTK_INFO("Adding new refinement level");
        }
        bbss.resize(reflevel+2);
        obss.resize(reflevel+2);
        pss.resize(reflevel+2);
      }
      bbss.at(reflevel+1) = bbs;
      obss.at(reflevel+1) = obs;
      MakeMultigridBoxes (cctkGH, bbss, obss, local_bbsss);
      
      // make multiprocessor aware
      gh::cprocs ps;
      SplitRegions (cctkGH, bbs, obs, ps);    
      
      bbss.at(reflevel+1) = bbs;
      obss.at(reflevel+1) = obs;
      pss.at(reflevel+1) = ps;
    
    } // did_regrid?
    else
    {
      if (bbss.size() > reflevel+1) {
        if (verbose) {
          CCTK_INFO("Removing refinement level");
        }
      }
      bbss.resize(reflevel+1);
      obss.resize(reflevel+1);
      // Set local bbsss
      MakeMultigridBoxes (cctkGH, bbss, obss, local_bbsss);
      
      pss.resize(reflevel+1);
      
      do_recompose = 1;
    }
    
    // make multigrid aware
    MakeMultigridBoxes (cctkGH, bbss, obss, bbsss);

//     cout << "bbsss done:" << endl << bbsss << endl;
//     cout << "obss done:" << endl << obss << endl;
//     cout << "pss done:" << endl << pss << endl;
    
    return do_recompose;
  }
  
  ivect pos2int (const cGH* const cctkGH, const gh& hh,
                 const rvect & rpos, const int rl)
  {
    rvect global_lower, global_upper;
    for (int d=0; d<dim; ++d) {
      const int ierr = CCTK_CoordRange
	(cctkGH, &global_lower[d], &global_upper[d], d+1, 0, "cart3d");
      if (ierr<0) {
	global_lower[d] = 0;
	global_upper[d] = 1;
      }
    }
    const ivect global_extent (hh.baseextent.upper() - hh.baseextent.lower());
    
    const rvect scale  = rvect(global_extent) / (global_upper - global_lower);
    const int levfac = ipow(hh.reffact, rl);
    assert (all (hh.baseextent.stride() % levfac == 0));
    const ivect istride = hh.baseextent.stride() / levfac;
    
    const ivect ipos
      = (ivect(floor((rpos - global_lower) * scale / rvect(istride) + 0.5))
         * istride);
    
    return ipos;
  }
  
  rvect int2pos (const cGH* const cctkGH, const gh& hh,
                 const ivect & ipos, const int rl)
  {
    rvect global_lower, global_upper;
    for (int d=0; d<dim; ++d) {
      const int ierr = CCTK_CoordRange
	(cctkGH, &global_lower[d], &global_upper[d], d+1, 0, "cart3d");
      
      if (ierr<0) {
	global_lower[d] = 0;
	global_upper[d] = 1;
      }
    }
    const ivect global_extent (hh.baseextent.upper() - hh.baseextent.lower());
    
    const rvect scale  = rvect(global_extent) / (global_upper - global_lower);
    const int levfac = ipow(hh.reffact, rl);
    assert (all (hh.baseextent.stride() % levfac == 0));
    const ivect istride = hh.baseextent.stride() / levfac;    
    
    const rvect rpos
      = rvect(ipos) / scale + global_lower;
    
    return rpos;
  }
  
} // namespace CarpetAdaptiveRegrid