aboutsummaryrefslogtreecommitdiff
path: root/CarpetDev/CarpetAdaptiveRegrid/src/CAR.cc
blob: 207e12c008271ee35f30b511bf7ca6a3f06b78a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
#include <cassert>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <stack>

#include "cctk.h"
#include "cctk_Parameters.h"

#include "gh.hh"
#include "vect.hh"

#include "carpet.hh"
#include "CAR.hh"

extern "C" {
  static const char* rcsid = "$Header:$";
  CCTK_FILEVERSION(Carpet_CarpetAdaptiveregrid_regrid_cc);
}



namespace CarpetAdaptiveRegrid {


  static gh::mexts local_bbsss;
  static gh::rbnds local_obss;
  
  static CCTK_INT last_iteration = -1;  
  
  using namespace std;
  using namespace Carpet;

  extern "C" {
    void CCTK_FCALL CCTK_FNAME(copy_mask)
      (const CCTK_INT& snx, const CCTK_INT& sny, const CCTK_INT& snz,
       const CCTK_INT* smask, const CCTK_INT sbbox[3][3],
       const CCTK_INT& dnx, const CCTK_INT& dny, const CCTK_INT& dnz,
       CCTK_INT* dmask, const CCTK_INT dbbox[3][3]);
    void CCTK_FCALL CCTK_FNAME(check_box)
      (const CCTK_INT& nx, const CCTK_INT& ny, const CCTK_INT& nz,
       const CCTK_INT* mask,
       CCTK_INT* sum_x, CCTK_INT* sum_y, CCTK_INT* sum_z,
       CCTK_INT* sig_x, CCTK_INT* sig_y, CCTK_INT* sig_z,
       const CCTK_INT bbox[3][3],
       CCTK_INT newbbox1[3][3], CCTK_INT newbbox2[3][3],
       const CCTK_INT& min_width, const CCTK_REAL& min_fraction,
       CCTK_INT& didit);
  }

  ivect pos2int (const cGH* const cctkGH, const gh& hh,
                 const rvect & rpos, const int rl);
  rvect int2pos (const cGH* const cctkGH, const gh& hh,
                 const ivect & ipos, const int rl);
  
  CCTK_INT CarpetAdaptiveRegrid_Regrid (CCTK_POINTER_TO_CONST const cctkGH_,
                                CCTK_POINTER const bbsss_,
                                CCTK_POINTER const obss_,
                                CCTK_POINTER const pss_,
				CCTK_INT force)
  {
    DECLARE_CCTK_PARAMETERS;
    
    const cGH * const cctkGH = (const cGH *) cctkGH_;
    
    gh::mexts  & bbsss = * (gh::mexts  *) bbsss_;
    gh::rbnds  & obss  = * (gh::rbnds  *) obss_;
    gh::rprocs & pss   = * (gh::rprocs *) pss_;
    
    gh const & hh = *vhh.at(Carpet::map);
    
    assert (is_singlemap_mode());

    if (local_bbsss.empty()) { // It's the first call
      // Is this really the right thing to do on 
      // multiprocessors?
      //      local_bbsss = bbsss;
      const ibbox& baseext = 
        vdd.at(Carpet::map)->bases.at(mglevel).at(reflevel).exterior;
      vector<ibbox> tmp_bbs;
      tmp_bbs.push_back (baseext);
      vector<bbvect> tmp_obs;
      tmp_obs.push_back (bbvect(true));
      vector<vector<ibbox> > tmp_bbss(1);
      vector<vector<bbvect> > tmp_obss(1);
      tmp_bbss.at(0) = tmp_bbs;
      tmp_obss.at(0) = tmp_obs;
      MakeMultigridBoxes(cctkGH, tmp_bbss, tmp_obss, local_bbsss);
      local_obss = tmp_obss;
      last_iteration = cctkGH->cctk_iteration;
      CCTK_INT do_recompose = 
        ManualCoordinateList (cctkGH, hh, bbsss, obss, pss, 
                              local_bbsss, local_obss);

      if (verbose) {
        ostringstream buf;
        buf << "Done with manual coordinate list. Total list is:"
            << endl << local_bbsss;
        CCTK_INFO(buf.str().c_str());
      }      

      return do_recompose;
    }

    // FIXME: We should check that the local reflevel "agrees"
    // with what is passed in.
    
    // In force mode (force == true) we do not check the
    // CarpetAdaptiveregrid parameters

    if (!force) {

      assert (regrid_every == -1 || regrid_every == 0
	      || regrid_every % maxmglevelfact == 0);
    
      // Return if no regridding is desired
      if (regrid_every == -1) return 0;
      
      // Return if we want to regrid during initial data only, and this
      // is not the time for initial data
      if (regrid_every == 0 && cctkGH->cctk_iteration != 0) return 0;

      // Return if we want to regrid regularly, but not at this time
      if (regrid_every > 0 && cctkGH->cctk_iteration != 0
	  && (cctkGH->cctk_iteration-1) % regrid_every != 0)
      {
	return 0;
      }

      // Return if it's initial data as we can't handle that yet.
      // Actually don't as initial data should now be handled
      // by the manualcoordinatelist above.
      //       if (cctkGH->cctk_iteration == 0) {
      //         return 0;
      //       }
      
    }

    if (reflevel == maxreflevels - 1) return 0;

    // Return if we want to regrid regularly, but not at this time
    if (regrid_every > 0 && cctkGH->cctk_iteration != 0
        && (cctkGH->cctk_iteration-1) % regrid_every != 0)
    {
      return 0;
    }

    // Return if we have already been called on this iteration
    if (cctkGH->cctk_iteration == last_iteration) {
      return 0;
    }
    else {
      last_iteration = cctkGH->cctk_iteration;
    }

//     cout << "bbsss at start" << endl << bbsss << endl;
//     cout << "obss at start" << endl << obss << endl;
//     cout << "pss at start" << endl << pss << endl;

    CCTK_INT do_recompose;
    do_recompose = 1;

    CCTK_INT sum_handle = CCTK_ReductionArrayHandle("sum");

    CCTK_INT called_on_ml = mglevel;
    CCTK_INT called_on_rl = reflevel;
    CCTK_INT called_on_map = carpetGH.map;
    
    CCTK_INT finest_current_rl = local_bbsss.at(0).size();
    finest_current_rl = min(finest_current_rl, maxreflevels - 1);

    // Loop over all levels finer than this one.
    
    leave_singlemap_mode(const_cast<cGH *> (cctkGH));
    leave_level_mode(const_cast<cGH *> (cctkGH));
    for (CCTK_INT rl = called_on_rl; rl < finest_current_rl; ++rl) {
      enter_level_mode(const_cast<cGH *> (cctkGH), rl);
      enter_singlemap_mode(const_cast<cGH *> (cctkGH), called_on_map);

      if (verbose) {
        ostringstream buf;
        buf << "Entering level " << rl << " (of " << finest_current_rl 
            << "), map " << called_on_map;
        CCTK_INFO(buf.str().c_str());
      }
      
      // So the full algorithm should look something like:
      
      // Find how big the first bounding box should be on this level
      //   Do this by finding min lower and max upper bounds of all bboxes
      // Allocate box
      // Fill errors from local arrays
      // If grandchildren exist use their bboxes (expanded) to add to errors
      // Reduce errors (MPI sum)
      // Set errors to 0/1
      // Define vectors of bboxes final (empty) and todo (contains bbox)
      // Define vector of masks (contains error mask)
      // Loop over all entries in todo:
      //   Setup appropriate 1d array memory
      //   Call fortran routine
      //   If return is:
      //     zero: add bbox to final
      //     one:  add new bbox to todo and assoc mask to masklist
      //     two:  add both new bboxs to todo and assoc masks to masklist
      //   
      
      vector<ibbox> bbs = local_bbsss.at(mglevel).at(reflevel);
      
      stack<ibbox> final;
      
      vector<vector<ibbox> > bbss = bbsss.at(0);
      vector<vector<ibbox> > local_bbss = local_bbsss.at(0);
      
      bool did_regrid = false;
            
      rvect physical_min, physical_max;
      rvect interior_min, interior_max;
      rvect exterior_min, exterior_max;
      rvect base_spacing;
      int ierr = GetDomainSpecification
        (dim, &physical_min[0], &physical_max[0],
         &interior_min[0], &interior_max[0],
         &exterior_min[0], &exterior_max[0], &base_spacing[0]);
      assert (!ierr);
      
      for ( vector<ibbox>::const_iterator bbi = bbs.begin(); 
            bbi != bbs.end();
            ++bbi) 
      {
        
        ivect low = bbi->lower();
        ivect upp = bbi->upper();
        
        // low and upp now define the starting bbox.
        
        ibbox bb(low, upp, bbs.at(0).stride());
        
        if (verbose) {
          ostringstream buf;
          buf << "Found the local size of the box: " << endl << bb;
          CCTK_INFO(buf.str().c_str());
        }
        
        vector<CCTK_INT> local_mask(prod(bb.shape()/bb.stride()), 0),
          mask(prod(bb.shape()/bb.stride()), 0);
        
        if (veryverbose) {
          ostringstream buf;
          buf << "Allocated mask size: " << bb.shape()/bb.stride() 
              << " (points: " << prod(bb.shape()/bb.stride()) << ")";
          CCTK_INFO(buf.str().c_str());
        }
        
        // Setup the mask.
        
        const ibbox& baseext = 
          vdd.at(Carpet::map)->bases.at(mglevel).at(reflevel).exterior;
        ivect imin = (bb.lower() - baseext.lower())/bb.stride(), 
          imax = (bb.upper() - baseext.lower())/bb.stride();
        
        BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) 
        {
          const CCTK_REAL *error_var_ptr = 
            static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                          0, error_var));
          const CCTK_REAL *x_var_ptr = 
            static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                          0, "Grid::x"));
          const CCTK_REAL *y_var_ptr = 
            static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                          0, "Grid::y"));
          const CCTK_REAL *z_var_ptr = 
            static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                          0, "Grid::z"));
          

          // These can actually be negative if the parent shrinks.
          // Of course, the final grid should still be properly
          // nested...
          //          assert(all(imin >= 0));
          //          assert(all(imax >= 0));
          // FIXME: Why should the following assert be true?
          //      assert(all(imax < ivect::ref(cctkGH->cctk_lsh)));
          assert(all(imin <= imax));
          
          for (CCTK_INT k = 0; k < cctkGH->cctk_lsh[2]; ++k) {
            for (CCTK_INT j = 0; j < cctkGH->cctk_lsh[1]; ++j) {
              for (CCTK_INT i = 0; i < cctkGH->cctk_lsh[0]; ++i) {
                CCTK_INT index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL local_error = abs(error_var_ptr[index]);
                if (local_error > max_error) {
                  CCTK_INT ii = i + cctkGH->cctk_lbnd[0] - imin[0];
                  CCTK_INT jj = j + cctkGH->cctk_lbnd[1] - imin[1];
                  CCTK_INT kk = k + cctkGH->cctk_lbnd[2] - imin[2];
                  // Check that this point actually intersects with 
                  // this box (if this component was actually a
                  // different grid on the same processor, it need not)
                  if ( (ii >= 0) and (jj >= 0) and (kk >= 0) and 
                       (ii <= imax[0] - imin[0]) and
                       (jj <= imax[1] - imin[1]) and
                       (kk <= imax[2] - imin[2]) )
                  {
                    assert (ii >= 0);
                    assert (jj >= 0);
                    assert (kk >= 0);
                    assert (ii <= imax[0] - imin[0]);
                    assert (jj <= imax[1] - imin[1]);
                    assert (kk <= imax[2] - imin[2]);
                    CCTK_INT mindex = ii + 
                      (imax[0] - imin[0] + 1)*
                      (jj + (imax[1] - imin[1] + 1) * kk);
                    local_mask[mindex] = 1;
                    if (veryverbose) {
                      CCTK_VInfo(CCTK_THORNSTRING, "In error at point"
                                 "\n(%g,%g,%g) [%d,%d,%d] [[%d,%d,%d]]",
                                 x_var_ptr[index],
                                 y_var_ptr[index],
                                 z_var_ptr[index],
                                 ii, jj, kk, i,j,k);
                    }
                  }
                }
              }
            }
          }
        } END_LOCAL_COMPONENT_LOOP;
        
        // Instead check the error on child level, if exists
        // This should fix the "orphaned grandchild" problem
        
        if (local_bbss.size() > reflevel+1) {
                
          CCTK_INT currentml = mglevel;
          CCTK_INT currentrl = reflevel;
          CCTK_INT currentmap = carpetGH.map;            
          
          leave_singlemap_mode(const_cast<cGH *> (cctkGH));
          leave_level_mode(const_cast<cGH *> (cctkGH));
      
          enter_level_mode(const_cast<cGH *> (cctkGH), currentrl + 1);
          enter_singlemap_mode(const_cast<cGH *> (cctkGH), currentmap);
                          
          if (verbose) {
            ostringstream buf;
            buf << "Checking for errors on child level " 
                << reflevel << " map " << currentmap;
            CCTK_INFO(buf.str().c_str());
          }
      
          BEGIN_LOCAL_COMPONENT_LOOP(cctkGH, CCTK_GF) {
            const CCTK_REAL *error_var_ptr = 
              static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                            0, error_var));
            const CCTK_REAL *x_var_ptr = 
              static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                            0, "Grid::x"));
            const CCTK_REAL *y_var_ptr = 
              static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                            0, "Grid::y"));
            const CCTK_REAL *z_var_ptr = 
              static_cast<const CCTK_REAL*>(CCTK_VarDataPtr(cctkGH, 
                                                            0, "Grid::z"));
            
            //            assert(all(imin >= 0));
            //            assert(all(imax >= 0));
            // FIXME: Why should the following assert be true?
            //      assert(all(imax < ivect::ref(cctkGH->cctk_lsh)));
            assert(all(imin <= imax));
            
            for (CCTK_INT k = 0; k < cctkGH->cctk_lsh[2]; ++k) {
              for (CCTK_INT j = 0; j < cctkGH->cctk_lsh[1]; ++j) {
                for (CCTK_INT i = 0; i < cctkGH->cctk_lsh[0]; ++i) {
                  CCTK_INT index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                  CCTK_REAL local_error = abs(error_var_ptr[index]);
                  if (local_error > max_error) {
                    CCTK_INT ii = i + cctkGH->cctk_lbnd[0] - imin[0];
                    CCTK_INT jj = j + cctkGH->cctk_lbnd[1] - imin[1];
                    CCTK_INT kk = k + cctkGH->cctk_lbnd[2] - imin[2];
                    // Check that this point actually intersects with 
                    // this box (if this component was actually a
                    // different grid on the same processor, it need not)
                    if ( (ii >= 0) and (jj >= 0) and (kk >= 0) and 
                         (ii <= imax[0] - imin[0]) and
                         (jj <= imax[1] - imin[1]) and
                         (kk <= imax[2] - imin[2]) )
                    {
                      assert (ii >= 0);
                      assert (jj >= 0);
                      assert (kk >= 0);
                      assert (ii <= imax[0] - imin[0]);
                      assert (jj <= imax[1] - imin[1]);
                      assert (kk <= imax[2] - imin[2]);
                      CCTK_INT mindex = ii + 
                        (imax[0] - imin[0] + 1)*
                        (jj + (imax[1] - imin[1] + 1) * kk);
                      local_mask[mindex] = 1;
                      if (veryverbose) {
                        CCTK_VInfo(CCTK_THORNSTRING, "In error at point"
                                   "\n(%g,%g,%g) [%d,%d,%d] [[%d,%d,%d]]",
                                   x_var_ptr[index],
                                   y_var_ptr[index],
                                   z_var_ptr[index],
                                   ii, jj, kk, i,j,k);
                      }
                    }
                  }
                }
              }
            }
          } END_LOCAL_COMPONENT_LOOP;
        
          leave_singlemap_mode(const_cast<cGH *> (cctkGH));
          leave_level_mode(const_cast<cGH *> (cctkGH));
          
          enter_level_mode(const_cast<cGH *> (cctkGH), currentrl);
          enter_singlemap_mode(const_cast<cGH *> (cctkGH), currentmap);

        }
        
        // Reduce errors (MPI sum)

        CCTK_INT ierr = 
          CCTK_ReduceLocArrayToArray1D (cctkGH,
                                        -1,
                                        sum_handle,
                                        &local_mask.front(),
                                        &mask.front(),
                                        local_mask.size(),
                                        CCTK_VARIABLE_INT );
        
        if (ierr) {
          ostringstream buf;
          buf << "The reduction on level " << reflevel << " failed "
              << "with error " << ierr;
          CCTK_WARN(0, buf.str().c_str());
        }

        // Set errors to 0/1
        
        for (CCTK_INT k = 0; k < imax[2] - imin[2] + 1; k++) {
          for (CCTK_INT j = 0; j < imax[1] - imin[1] + 1; j++) {
            for (CCTK_INT i = 0; i < imax[0] - imin[0] + 1; i++) {
              CCTK_INT index =  i + 
                (imax[0] - imin[0] + 1)*(j + (imax[1] - imin[1] + 1) * k);
              if (mask[index]) {
                mask[index] = 1;
              }
            }
          }
        }
        
        // Pad the errors: stage 1 - buffer points marked as 2.
        
        for (CCTK_INT k = 0; k < imax[2] - imin[2] + 1; k++) {
          for (CCTK_INT j = 0; j < imax[1] - imin[1] + 1; j++) {
            for (CCTK_INT i = 0; i < imax[0] - imin[0] + 1; i++) {
              CCTK_INT index =  i + 
                (imax[0] - imin[0] + 1)*(j + (imax[1] - imin[1] + 1) * k);
              if (mask[index] == 1) {
                for (CCTK_INT kk = max(k - pad, 0); 
                     kk < min(k + pad + 1, imax[2] - imin[2] + 1);
                       ++kk)
                {
                  for (CCTK_INT jj = max(j - pad, 0); 
                       jj < min(j + pad + 1, imax[1] - imin[1] + 1);
                       ++jj)
                  {
                    for (CCTK_INT ii = max(i - pad, 0); 
                         ii < min(i + pad + 1, imax[0] - imin[0] + 1);
                         ++ii)
                    {
                      CCTK_INT mindex = ii + 
                        (imax[0] - imin[0] + 1)*
                        (jj + (imax[1] - imin[1] + 1) * kk);
                      if (!mask[mindex]) mask[mindex] = 2;
                    }
                  }
                }
              }
            }
          }
        }
        // stage 2: all buffer points marked truly in error.
        // Also mark if there are any errors.
        bool should_regrid = false;
        for (CCTK_INT k = 0; k < imax[2] - imin[2] + 1; k++) {
          for (CCTK_INT j = 0; j < imax[1] - imin[1] + 1; j++) {
            for (CCTK_INT i = 0; i < imax[0] - imin[0] + 1; i++) {
              CCTK_INT index =  i + 
                (imax[0]-imin[0] + 1)*(j + (imax[1] - imin[1] + 1) * k);
              if (mask[index] > 1) mask[index] = 1;
              if ((veryverbose) and (mask[index])) {
                CCTK_VInfo(CCTK_THORNSTRING, "Mask set at point"
                           "\n[%d,%d,%d]",
                           i,j,k);
              } 
              should_regrid |= (mask[index]);
              did_regrid |= should_regrid;
            }
          }
        }    
        
        if (verbose) {
          ostringstream buf;
          buf << "Finished looking for errors on level " 
              << reflevel << endl << "should_regrid " << should_regrid
              << " did_regrid " << did_regrid;
          CCTK_INFO(buf.str().c_str());
        }
        
        // Define vectors of bboxes final (empty) and todo (contains bbox)
        
        if (should_regrid) {
          
          stack<ibbox> todo;
          
          todo.push(bb);
          
          // Define vector of masks (contains error mask)
          
          stack<vector<CCTK_INT> > masklist;
          
          masklist.push(mask);
          
          // Loop over all entries in todo:
          //   Setup appropriate 1d array memory
          //   Call fortran routine
          //   If return is:
          //     zero: add bbox to final
          //     one:  add new bbox to todo and assoc mask to masklist
          //     two:  add both new bboxs to todo and assoc masks to masklist
          
          while (!todo.empty())
          {
            
            ibbox bb = todo.top(); todo.pop();
            vector<CCTK_INT> mask = masklist.top(); masklist.pop();
            
            CCTK_INT nx = bb.shape()[0]/bb.stride()[0];
            CCTK_INT ny = bb.shape()[1]/bb.stride()[1];
            CCTK_INT nz = bb.shape()[2]/bb.stride()[2];
            
            if (verbose) {
              ostringstream buf;
              buf << "todo loop. Box: " << endl << bb;
              CCTK_INFO(buf.str().c_str());
            }
            
            vector<CCTK_INT> sum_x(nx, 0);
            vector<CCTK_INT> sig_x(nx, 0);
            vector<CCTK_INT> sum_y(ny, 0);
            vector<CCTK_INT> sig_y(ny, 0);
            vector<CCTK_INT> sum_z(nz, 0);
            vector<CCTK_INT> sig_z(nz, 0);
            
            CCTK_INT fbbox[3][3], fbbox1[3][3], fbbox2[3][3];
            
            for (CCTK_INT d = 0; d < 3; ++d) {
              fbbox[0][d] = bb.lower()[d];
              fbbox[1][d] = bb.upper()[d];
              fbbox[2][d] = bb.stride()[d];
            }
              
            CCTK_INT didit;
              
            CCTK_FNAME(check_box)(nx, ny, nz,
                                  &mask.front(),
                                  &sum_x.front(), &sum_y.front(),
                                  &sum_z.front(),
                                  &sig_x.front(), &sig_y.front(),
                                  &sig_z.front(),
                                  fbbox,
                                  fbbox1, fbbox2,
                                  min_width, min_fraction,
                                  didit);
            
            if (didit == 0) {
              
              final.push(bb);          
              
              if (verbose) {
                ostringstream buf;
                buf << "todo loop. Box pushed to final: " 
                    << endl << bb;
                CCTK_INFO(buf.str().c_str());
              }
            }
            else if (didit == 1) {
              
              ibbox newbbox1(ivect::ref(&fbbox1[0][0]),
                             ivect::ref(&fbbox1[1][0]),
                             ivect::ref(&fbbox1[2][0]));
              todo.push(newbbox1);
              
              CCTK_INT dnx = newbbox1.shape()[0]/newbbox1.stride()[0];
              CCTK_INT dny = newbbox1.shape()[1]/newbbox1.stride()[1];
              CCTK_INT dnz = newbbox1.shape()[2]/newbbox1.stride()[2];
              
              vector<CCTK_INT>  
                newmask1(prod(newbbox1.shape()/newbbox1.stride()), 0);
              
              CCTK_FNAME(copy_mask)(nx, ny, nz,
                                    &mask.front(), fbbox,
                                    dnx, dny, dnz,
                                    &newmask1.front(), fbbox1);
              masklist.push(newmask1);
              
              if (verbose) {
                ostringstream buf;
                buf << "todo loop. New (single) box created: " 
                    << endl << newbbox1;
                CCTK_INFO(buf.str().c_str());
              }
            }
            else if (didit == 2) {
              
              ibbox newbbox1(ivect::ref(&fbbox1[0][0]),
                             ivect::ref(&fbbox1[1][0]),
                             ivect::ref(&fbbox1[2][0]));
              todo.push(newbbox1);
              ibbox newbbox2(ivect::ref(&fbbox2[0][0]),
                             ivect::ref(&fbbox2[1][0]),
                             ivect::ref(&fbbox2[2][0]));
              todo.push(newbbox2);
              
              CCTK_INT dnx = newbbox1.shape()[0]/newbbox1.stride()[0];
              CCTK_INT dny = newbbox1.shape()[1]/newbbox1.stride()[1];
              CCTK_INT dnz = newbbox1.shape()[2]/newbbox1.stride()[2];
              
              vector<CCTK_INT>  
                newmask1(prod(newbbox1.shape()/newbbox1.stride()), 0);
              
              CCTK_FNAME(copy_mask)(nx, ny, nz,
                                    &mask.front(), fbbox,
                                    dnx, dny, dnz,
                                    &newmask1.front(), fbbox1);
              masklist.push(newmask1);
              
              dnx = newbbox2.shape()[0]/newbbox2.stride()[0];
              dny = newbbox2.shape()[1]/newbbox2.stride()[1];
              dnz = newbbox2.shape()[2]/newbbox2.stride()[2];
              
              vector<CCTK_INT>  
                newmask2(prod(newbbox2.shape()/newbbox2.stride()), 0);
              
              CCTK_FNAME(copy_mask)(nx, ny, nz,
                                    &mask.front(), fbbox,
                                    dnx, dny, dnz,
                                    &newmask2.front(), fbbox2);
              masklist.push(newmask2);
              
              if (verbose) {
                ostringstream buf;
                buf << "todo loop. New (double) box created. Box 1: " 
                    << endl << newbbox1
                    << "                                     Box 2: "
                    << endl << newbbox2;
                CCTK_INFO(buf.str().c_str());
              }
            }
            else {
              CCTK_WARN(0, "The fortran routine must be confused.");
            }
            
          } // loop over todo vector (boxes needing to be done).
        } // should regrid.
      } // Loop over boxes on the parent grid.
      
      if (did_regrid) {
          
        // Fixup the stride
        vector<ibbox> newbbs;
        vector<bbvect> obs;
        while (! final.empty()) {
          ibbox bb = final.top(); final.pop();
          
          if (veryverbose) {
            ostringstream buf;
            buf << "Looping over the final list. Box is:"
                << endl << bb;
            CCTK_INFO(buf.str().c_str());
          }
          
          ivect ilo = bb.lower();
          ivect ihi = bb.upper();
          rvect lo = int2pos(cctkGH, hh, ilo, reflevel);
          rvect hi = int2pos(cctkGH, hh, ihi, reflevel);
          rvect str = base_spacing * 
            ipow((CCTK_REAL)mgfact, basemglevel) /
            ipow(reffact, reflevel);
          rbbox newbbcoord(lo, hi, str);
          
          if (veryverbose) {
            ostringstream buf;
            buf << "Dealing with boundaries. Coord box is:"
                << endl << newbbcoord;
            CCTK_INFO(buf.str().c_str());
          }
          
          // Set the correct ob here.
          
          bbvect ob(false);
          for (int d=0; d<dim; ++d) {
            assert (mglevel==0);
            
            // Find the size of the physical domain
            
            rvect const spacing = base_spacing * 
              ipow((CCTK_REAL)mgfact, basemglevel) /
              ipow(reffact, reflevel+1);
            ierr = ConvertFromPhysicalBoundary
              (dim, &physical_min[0], &physical_max[0],
               &interior_min[0], &interior_max[0],
               &exterior_min[0], &exterior_max[0], &spacing[0]);
            assert (!ierr);
            
            // If need be clip the domain
            
            rvect lo = newbbcoord.lower();
            if (newbbcoord.lower()[d] < physical_min[d]) {
              lo[d] = exterior_min[d];
            }
            rvect up = newbbcoord.upper();
            if (newbbcoord.upper()[d] > physical_max[d]) {
              up[d] = exterior_max[d];
            }
            rvect str = newbbcoord.stride();
            
            // Set the ob if outside the physical domain
            
            ob[d][0] = 
              abs(lo[d] - exterior_min[d]) < 1.0e-6 * spacing[d];
            ob[d][1] = 
              abs(up[d] - exterior_max[d]) < 1.0e-6 * spacing[d];
            
            if (veryverbose) {
              ostringstream buf;
              buf << "Done clipping domain:"
                  << endl << lo << endl << up << endl << str;
              CCTK_INFO(buf.str().c_str());
            } 
            
            // Check that the striding is correct.
            
            CCTK_REAL remainder = fmod((up[d] - lo[d]), str[d])/str[d];
            
            if ( abs(remainder) > 1.e-6 ) {
              if (ob[d][0]) {
                up[d] += str[d] * (1 - remainder);
              }
              else if (ob[d][1]) {
                lo[d] -= str[d] * remainder;
              }
            }
            
            if (veryverbose) {
              ostringstream buf;
              buf << "Corrected coords for striding:"
                  << endl << lo << endl << up << endl << str;
              CCTK_INFO(buf.str().c_str());
            } 
            
            newbbcoord = rbbox(lo, up, str);
          }
          if (verbose) {
            ostringstream buf;
            buf << "Done dealing with boundaries. Coord box is:"
                << endl << newbbcoord << endl
                << "obox is:" << endl << ob;
            CCTK_INFO(buf.str().c_str());
          }
          
          // Convert back to integer coordinates
          // We have to do this on the fine grid to ensure that
          // it is correct for an outer boundary with odd numbers
          // of ghost zones where the bbox does not align with the parent.
          
          ilo = pos2int(cctkGH, hh, newbbcoord.lower(), reflevel+1);
          ihi = pos2int(cctkGH, hh, newbbcoord.upper(), reflevel+1);
          ivect istr = bb.stride() / reffact;
          
          // Check that the width is sufficient
          // This can only be too small if the domain was clipped
          for (int d=0; d < dim; ++d) {
            if (ihi[d] - ilo[d] < min_width * istr[d]) {
              if (ob[d][0]) {
                if (ob[d][1]) {
                  CCTK_WARN(0, "The domain is too small?!");
                }
                ihi[d] = ilo[d] + min_width * istr[d];
              }
              else if (ob[d][1]) {
                if (ob[d][0]) {
                  CCTK_WARN(0, "The domain is too small?!");
                }
                ilo[d] = ihi[d] - min_width * istr[d];
              }
              else {
                ostringstream buf;
                buf << "The grid is unclipped and too small?" << endl 
                    << ilo << endl << ihi << endl << istr << endl << d;
                CCTK_WARN(0, buf.str().c_str());
              }
            }
          }
          
          if (veryverbose) {
            ostringstream buf;
            buf << "Corrected integer coords for min_width:"
                << endl << ilo << endl << ihi << endl << istr;
            CCTK_INFO(buf.str().c_str());
          } 
          
          ibbox newbb(ilo, ihi, istr);          
          
          if (verbose) {
            ostringstream buf;
            buf << "After dealing with boundaries. Final box is:"
                << endl << newbb;
            CCTK_INFO(buf.str().c_str());
          }
          
          newbbs.push_back (newbb);
          obs.push_back(ob);
        }
        
        
        // FIXME: check if the newbbs is really different
        // from the current bbs
        //        if not, set do_recompose = 0
        bbs = newbbs;
        
        // Set local bbss
        
        if (bbss.size() < reflevel+2) {
          if (verbose) {
            CCTK_INFO("Adding new refinement level");
          }
          local_bbss.resize(reflevel+2);
          bbss.resize(reflevel+2);
          local_obss.resize(reflevel+2);
          obss.resize(reflevel+2);
          pss.resize(reflevel+2);
        }
        local_bbss.at(reflevel+1) = bbs;
        local_obss.at(reflevel+1) = obs;
        MakeMultigridBoxes (cctkGH, local_bbss, local_obss, local_bbsss);
        
        // make multiprocessor aware
        gh::cprocs ps;
        SplitRegions (cctkGH, bbs, obs, ps);    
        
        bbss.at(reflevel+1) = bbs;
        obss.at(reflevel+1) = obs;
        pss.at(reflevel+1) = ps;
        
      } // did_regrid?
      else
      {
        if (local_bbss.size() > reflevel+1) {
          if (verbose) {
            CCTK_INFO("Removing refinement level");
          }
        }
        local_bbss.resize(reflevel+1);
        bbss.resize(reflevel+1);
        local_obss.resize(reflevel+1);
        obss.resize(reflevel+1);
        // Set local bbsss
        MakeMultigridBoxes (cctkGH, local_bbss, local_obss, local_bbsss);
        
        pss.resize(reflevel+1);
        
        do_recompose = 1;
      }
        
      // make multigrid aware
      MakeMultigridBoxes (cctkGH, bbss, obss, bbsss);
      
      leave_singlemap_mode(const_cast<cGH *> (cctkGH));
      leave_level_mode(const_cast<cGH *> (cctkGH));
      
    } 

    enter_level_mode(const_cast<cGH *> (cctkGH), called_on_rl);
    enter_singlemap_mode(const_cast<cGH *> (cctkGH), called_on_map);

    if (verbose) {
      ostringstream buf;
      buf << "Done with it all. Iteration " << cctkGH->cctk_iteration
          << " level " << reflevel << endl << "Total list is:"
          << endl << local_bbsss;
      CCTK_INFO(buf.str().c_str());
    }      
    
    return do_recompose;
  }
  
  ivect pos2int (const cGH* const cctkGH, const gh& hh,
                 const rvect & rpos, const int rl)
  {
    rvect global_lower, global_upper;
    for (int d=0; d<dim; ++d) {
      const int ierr = CCTK_CoordRange
	(cctkGH, &global_lower[d], &global_upper[d], d+1, 0, "cart3d");
      if (ierr<0) {
	global_lower[d] = 0;
	global_upper[d] = 1;
      }
    }
    const ivect global_extent (hh.baseextent.upper() - hh.baseextent.lower());
    
    const rvect scale  = rvect(global_extent) / (global_upper - global_lower);
    const int levfac = ipow(hh.reffact, rl);
    assert (all (hh.baseextent.stride() % levfac == 0));
    const ivect istride = hh.baseextent.stride() / levfac;
    
    const ivect ipos
      = (ivect(floor((rpos - global_lower) * scale / rvect(istride) + 0.5))
         * istride);
    
    return ipos;
  }
  
  rvect int2pos (const cGH* const cctkGH, const gh& hh,
                 const ivect & ipos, const int rl)
  {
    rvect global_lower, global_upper;
    for (int d=0; d<dim; ++d) {
      const int ierr = CCTK_CoordRange
	(cctkGH, &global_lower[d], &global_upper[d], d+1, 0, "cart3d");
      
      if (ierr<0) {
	global_lower[d] = 0;
	global_upper[d] = 1;
      }
    }
    const ivect global_extent (hh.baseextent.upper() - hh.baseextent.lower());
    
    const rvect scale  = rvect(global_extent) / (global_upper - global_lower);
    const int levfac = ipow(hh.reffact, rl);
    assert (all (hh.baseextent.stride() % levfac == 0));
    const ivect istride = hh.baseextent.stride() / levfac;    
    
    const rvect rpos
      = rvect(ipos) / scale + global_lower;
    
    return rpos;
  }
  
} // namespace CarpetAdaptiveRegrid