aboutsummaryrefslogtreecommitdiff
path: root/Carpet/LoopControl/src/lc_siman.c
blob: d9e11839e602984ad637c8903b5d4d1c158eec30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/* Simulated annealing */

/* Adapted from GSL, the GNU Scientific Library, version 1.9 */

/* Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsl/gsl_machine.h>
#include <gsl/gsl_rng.h>

#include <cctk.h>

#ifdef HAVE_TGMATH_H
#  include <tgmath.h>
#endif

#include "lc_siman.h"

static inline 
double safe_exp (double x) /* avoid underflow errors for large uphill steps */
{ 
  return (x < GSL_LOG_DBL_MIN) ? 0.0 : exp(x);
}

/* this structure contains internal state information for
   lc_siman_solve */

typedef enum { state_initial, state_first, state_looping } lc_siman_location_t;

/* no typedef here; forward declcared in lc_siman.h */
struct lc_siman_state_t {
  lc_siman_location_t state;
  const gsl_rng *r;
  lc_siman_step_t take_step;
  lc_siman_metric_t distance;
  lc_siman_print_t print_position;
  size_t element_size;
  lc_siman_params_t params;
  void *x, *new_x, *best_x;
  double E, new_E, best_E;
  int i, done;
  double T;
  int n_evals, n_iter, n_accepts, n_rejects, n_eless;
};

/* implementation of a basic simulated annealing algorithm */

lc_siman_state_t *
lc_siman_solve (lc_siman_state_t *restrict state,
                const gsl_rng *restrict r,
                void *restrict x0_p, double E0,
                lc_siman_step_t take_step,
                lc_siman_metric_t distance,
                lc_siman_print_t print_position,
                size_t element_size,
                lc_siman_params_t params)
{
  if (!state) {
    state = malloc(sizeof *state);
    state->state = state_initial;
  }
  switch (state->state) {
  case state_initial: goto label_initial;
  case state_first  : goto label_first;
  case state_looping: goto label_looping;
  }
  abort();
  
 label_initial:;
  state->n_evals = 1;
  state->n_iter = 0;
  
  state->state = state_first;
  return state;
  
 label_first:;
  state->E = E0;
  
  state->x = malloc (element_size);
  memcpy (state->x, x0_p, element_size);
  state->new_x = malloc (element_size);
  state->best_x = malloc (element_size);
  memcpy (state->best_x, x0_p, element_size);
  
  state->best_E = state->E;
  
  state->T = params.t_initial;
  state->done = 0;
  
  if (print_position) {
    printf ("#-iter  #-evals   temperature     position   energy\n");
  }
  
  /* while (!done) */
 begin_while_notdone:;
  if (state->done) goto end_while_notdone;
  
  state->n_accepts = 0;
  state->n_rejects = 0;
  state->n_eless = 0;
  
  /* for (i = 0; i < params.iters_fixed_T; ++i) */
  state->i = 0;
 begin_for_i:;
  if (state->i >= params.iters_fixed_T) goto end_for_i;
  
  memcpy (state->new_x, state->x, element_size);
  
  take_step (r, state->new_x, params.step_size);
  memcpy (x0_p, state->new_x, element_size);
  
  state->state = state_looping;
  return state;
  
 label_looping:;
  state->new_E = E0;
  
  if (state->new_E <= state->best_E) {
    memcpy (state->best_x, state->new_x, element_size);
    state->best_E = state->new_E;
  }
  
  ++state->n_evals;             /* keep track of evaluations */
  /* now take the crucial step: see if the new point is accepted or
     not, as determined by the boltzman probability */
  if (state->new_E < state->E) {
    /* yay! take a step */
    memcpy (state->x, state->new_x, element_size);
    state->E = state->new_E;
    ++state->n_eless;
  } else if (gsl_rng_uniform(r) <
             safe_exp (-(state->new_E - state->E)/(params.k * state->T)))
  {
    /* yay! take a step */
    memcpy(state->x, state->new_x, element_size);
    state->E = state->new_E;
    ++state->n_accepts;
  } else {
    ++state->n_rejects;
  }
  
  ++state->i;
  goto begin_for_i;
 end_for_i:;
  
  if (print_position) {
    /* see if we need to print stuff as we go */
    /*       printf("%5d %12g %5d %3d %3d %3d", n_iter, T, n_evals, */
    /*           100*n_eless/n_steps, 100*n_accepts/n_steps, */
    /*           100*n_rejects/n_steps); */
    printf ("%5d   %7d  %12g", state->n_iter, state->n_evals, state->T);
    print_position (state->x);
    printf ("  %12g\n", state->E);
  }
  
  /* apply the cooling schedule to the temperature */
  /* FIXME: I should also introduce a cooling schedule for the iters */
  state->T /= params.mu_t;
  ++state->n_iter;
  if (state->T < params.t_min) {
    state->done = 1;
  }
  
  goto begin_while_notdone;
 end_while_notdone:;
  
  /* at the end, copy the result onto the initial point, so we pass it
     back to the caller */
  memcpy (x0_p, state->best_x, element_size);
  
  free (state->x);
  free (state->new_x);
  free (state->best_x);
  
  free (state);
  return NULL;
}