aboutsummaryrefslogtreecommitdiff
path: root/Carpet/CarpetSlab/src/GetHyperslab.cc
blob: cd8cb691708999ede283dce47bd91a08b3ee0777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#include <cassert>
#include <cstdlib>
#include <cstring>

#include <vector>

#include "cctk.h"

#include "bbox.hh"
#include "bboxset.hh"
#include "dh.hh"
#include "gdata.hh"
#include "ggf.hh"
#include "gh.hh"
#include "vect.hh"

#include "carpet.hh"

#include "slab.hh"
#include "GetHyperslab.hh"



namespace CarpetSlab {
  
  using namespace Carpet;
  
  
  
  void *
  GetSlab (const cGH* const cgh,
           const int dest_proc,
           const int n,
           const int ti,
           const int hdim,
           const int origin[/*vdim*/],
           const int dirs[/*hdim*/],
           const int stride[/*hdim*/],
           const int length[/*hdim*/])
  {
    // Check Cactus grid hierarchy
    assert (cgh);
    
    // Check destination processor
    assert (dest_proc>=-1 && dest_proc<CCTK_nProcs(cgh));
    
    // Check variable index
    assert (n>=0 && n<CCTK_NumVars());
    
    // Get info about variable
    const int group = CCTK_GroupIndexFromVarI(n);
    assert (group>=0);
    const int n0 = CCTK_FirstVarIndexI(group);
    assert (n0>=0);
    const int var = n - n0;
    assert (var>=0);
    
    // Get info about group
    cGroup gp;
    CCTK_GroupData (group, &gp);
    assert (gp.dim<=dim);
    assert (CCTK_QueryGroupStorageI(cgh, group));
    const int typesize = CCTK_VarTypeSize(gp.vartype);
    assert (typesize>0);
    
    if (gp.grouptype==CCTK_GF && reflevel==-1) {
      CCTK_WARN (0, "It is not possible to use hyperslabbing for a grid function in global mode (use singlemap mode instead)");
    }
    const int rl = gp.grouptype==CCTK_GF ? reflevel : 0;
    
    if (gp.grouptype==CCTK_GF && Carpet::map==-1) {
      CCTK_WARN (0, "It is not possible to use hyperslabbing for a grid function in level mode (use singlemap mode instead)");
    }
    const int m = gp.grouptype==CCTK_GF ? Carpet::map : 0;
    
    // Check dimension
    assert (hdim>=0 && hdim<=gp.dim);
    
    // Check timelevel
    const int num_tl = gp.numtimelevels;
    assert (ti>=0 && ti<num_tl);
    const int tl = -ti;
    
    // Check origin
//     for (int d=0; d<dim; ++d) {
//       assert (origin[d]>=0 && origin[d]<=sizes[d]);
//     }
    
    // Check directions
    for (int dd=0; dd<hdim; ++dd) {
      assert (dirs[dd]>=1 && dirs[dd]<=dim);
    }
    
    // Check stride
    for (int dd=0; dd<hdim; ++dd) {
      assert (stride[dd]>0);
    }
    
    // Check length
    for (int dd=0; dd<hdim; ++dd) {
      assert (length[dd]>=0);
    }
    
    // Check extent
//     for (int dd=0; dd<hdim; ++dd) {
//       assert (origin[dirs[dd]-1] + length[dd] <= sizes[dirs[dd]]);
//     }
    
    // Get insider information about variable
    const gh* myhh;
    const dh* mydd;
    const ggf* myff;
    assert (group < (int)arrdata.size());
    myhh = arrdata.at(group).at(m).hh;
    assert (myhh);
    mydd = arrdata.at(group).at(m).dd;
    assert (mydd);
    assert (var < (int)arrdata.at(group).at(m).data.size());
    myff = arrdata.at(group).at(m).data.at(var);
    assert (myff);
    
    // Detemine collecting processor
    const int collect_proc = dest_proc<0 ? 0 : dest_proc;
    
    // Determine own rank
    const int rank = CCTK_MyProc(cgh);
    
    // Calculate global size
    int totalsize = 1;
    for (int dd=0; dd<hdim; ++dd) {
      totalsize *= length[dd];
    }
    
    // Allocate memory
    void* hdata = 0;
    if (dest_proc==-1 || rank==dest_proc) {
      assert (0);
      hdata = malloc(totalsize * typesize);
      assert (hdata);
      memset (hdata, 0, totalsize * typesize);
    }
    
    // Get sample data
    const gdata* mydata;
    mydata = myff->data_pointer(tl, rl, 0, 0);
    
    // Stride of data in memory
    const vect<int,dim> str = mydata->extent().stride();
    
    // Stride of collected data
    vect<int,dim> hstr = str;
    for (int dd=0; dd<hdim; ++dd) {
      hstr[dirs[dd]-1] *= stride[dd];
    }
    
    // Lower bound of collected data
    vect<int,dim> hlb(0);
    for (int d=0; d<gp.dim; ++d) {
      hlb[d] = origin[d] * str[d];
    }
    
    // Upper bound of collected data
    vect<int,dim> hub = hlb;
    for (int dd=0; dd<hdim; ++dd) {
      hub[dirs[dd]-1] += (length[dd]-1) * hstr[dirs[dd]-1];
    }
    
    // Calculate extent to collect
    const bbox<int,dim> hextent (hlb, hub, hstr);
    assert (hextent.size() == totalsize);
    
    // Create collector data object
    void* myhdata = rank==collect_proc ? hdata : 0;
    gdata* const alldata = mydata->make_typed (-1, error_centered, op_sync);
    alldata->allocate (hextent, collect_proc, myhdata);
    
    // Done with the temporary stuff
    mydata = 0;
    
    for (comm_state state; !state.done(); state.step()) {
      
      // Loop over all components, copying data from them
      BEGIN_LOCAL_COMPONENT_LOOP (cgh, gp.grouptype) {
        
        // Get data object
        mydata = myff->data_pointer(tl, rl, component, mglevel);
        
        // Calculate overlapping extents
        bboxset<int,dim> const myextents =
          mydd->light_boxes.at(mglevel).at(rl).at(component).interior & hextent;
        
        // Loop over overlapping extents
        for (bboxset<int,dim>::const_iterator ext_iter = myextents.begin();
             ext_iter != myextents.end();
             ++ext_iter) {
          
          // Copy data
          int const proc = myhh->processor(reflevel, component);
          alldata->copy_from
            (state, mydata, *ext_iter, *ext_iter, NULL, collect_proc, proc);
          
        }
        
      } END_LOCAL_COMPONENT_LOOP;
      
    } // for step
    
    // Copy result to all processors
    if (dest_proc == -1) {
      vector<gdata*> tmpdata(CCTK_nProcs(cgh));
      
      for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
        if (proc != collect_proc) {
          void* myhdata = rank==proc ? hdata : 0;
          tmpdata.at(proc) = mydata->make_typed (-1, error_centered, op_sync);
          tmpdata.at(proc)->allocate (alldata->extent(), proc, myhdata);
        }
      }
      
      for (comm_state state; not state.done(); state.step()) {
        for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
          if (proc != collect_proc) {
            tmpdata.at(proc)->copy_from
              (state, alldata, alldata->extent(), alldata->extent(), NULL,
               proc, collect_proc);
          }
        }
      }
      
      for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
        if (proc != collect_proc) {
          delete tmpdata.at(proc);
        }
      }
      
    } // Copy result
    
    delete alldata;
    
    // Success
    return hdata;
  }
  
  
  
  int
  Hyperslab_GetHyperslab (const cGH* const GH,
                          const int target_proc,
                          const int vindex,
                          const int vtimelvl,
                          const int hdim,
                          const int global_startpoint [/*vdim*/],
                          const int directions [/*vdim*/],
                          const int lengths [/*hdim*/],
                          const int downsample_ [/*hdim*/],
                          void** const hdata,
                          int hsize [/*hdim*/])
  {
    const int vdim = CCTK_GroupDimFromVarI(vindex);
    assert (vdim>=1 && vdim<=dim);
    
    // Check some arguments
    assert (hdim>=0 && hdim<=dim);
    
    // Check output arguments
    assert (hdata);
    assert (hsize);
    
    // Calculate more convenient representation of the direction
    int dirs[dim];              // should really be dirs[hdim]
    // The following if statement is written according to the
    // definition of "dir".
    if (hdim==1) {
      // 1-dimensional hyperslab
      int mydir = 0;
      for (int d=0; d<vdim; ++d) {
	if (directions[d]!=0) {
	  mydir = d+1;
	  break;
	}
      }
      assert (mydir>0);
      for (int d=0; d<vdim; ++d) {
	if (d == mydir-1) {
	  assert (directions[d]!=0);
	} else {
	  assert (directions[d]==0);
	}
      }
      dirs[0] = mydir;
    } else if (hdim==vdim) {
      // vdim-dimensional hyperslab
      for (int d=0; d<vdim; ++d) {
	dirs[d] = d+1;
      }
    } else if (hdim==2) {
      // 2-dimensional hyperslab with vdim==3
      assert (vdim==3);
      int mydir = 0;
      for (int d=0; d<vdim; ++d) {
	if (directions[d]==0) {
	  mydir = d+1;
	  break;
	}
      }
      assert (mydir>0);
      for (int d=0; d<vdim; ++d) {
	if (d == mydir-1) {
	  assert (directions[d]==0);
	} else {
	  assert (directions[d]!=0);
	}
      }
      int dd=0;
      for (int d=0; d<vdim; ++d) {
	if (d != mydir-1) {
	  dirs[dd] = d+1;
	  ++dd;
	}
      }
      assert (dd==hdim);
    } else {
      assert (0);
    }
    // Fill remaining length
    for (int d=vdim; d<dim; ++d) {
      dirs[d] = d+1;
    }
    
    // Calculate lengths
    vector<int> downsample(hdim);
    for (int dd=0; dd<hdim; ++dd) {
      if (lengths[dd]<0) {
	int gsh[dim];
	int ierr = CCTK_GroupgshVI(GH, dim, gsh, vindex);
	assert (!ierr);
	const int totlen = gsh[dirs[dd]-1];
	assert (totlen>=0);
	// Partial argument check
	assert (global_startpoint[dirs[dd]-1]>=0);
	assert (global_startpoint[dirs[dd]-1]<=totlen);
        downsample[dd] = downsample_ ? downsample_[dd] : 1;
	assert (downsample[dd]>0);
	hsize[dd] = (totlen - global_startpoint[dirs[dd]-1]) / downsample[dd];
      } else {
	hsize[dd] = lengths[dd];
      }
      assert (hsize[dd]>=0);
    }
    
    // Get the slab
    *hdata = GetSlab (GH,
		      target_proc,
		      vindex,
		      vtimelvl,
		      hdim,
		      global_startpoint,
		      dirs,
		      &downsample[0],
		      hsize);
    
    // Return with success
    return 1;
  }
  
  
  
} // namespace CarpetSlab