aboutsummaryrefslogtreecommitdiff
path: root/Carpet/CarpetRegrid2/src/regrid.cc
blob: 85f1c0b83f2083102e6b7f02d4909a735486ffe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <vector>

#include <cctk.h>
#include <cctk_Arguments.h>
#include <cctk_Parameters.h>

#include <bbox.hh>
#include <bboxset.hh>
#include <defs.hh>
#include <dh.hh>
#include <gh.hh>
#include <region.hh>
#include <vect.hh>

#include <carpet.hh>
#include <CarpetTimers.hh>

#include "indexing.hh"



namespace CarpetRegrid2 {
  
  using namespace std;
  using namespace Carpet;
  
  
  
  typedef bboxset <int, dim> ibboxset;
  typedef vect <CCTK_REAL, dim> rvect;
  typedef bbox <CCTK_REAL, dim> rbbox;
  
  
  
  struct centre_description {
    int                num_levels;
    int                active;
    rvect              position;
    vector <CCTK_REAL> radius;
    
    centre_description (cGH const * cctkGH, int n);
  };
  
  
  
  centre_description::
  centre_description (cGH const * const cctkGH, int const n)
  {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    
    assert (n >= 0 and n < num_centres);
    
    int lsh[2];
    getvectorindex2 (cctkGH, "CarpetRegrid2::radii", lsh);
    
    this->num_levels = num_levels[n];
    this->active = active[n];
    this->position = rvect (position_x[n], position_y[n], position_z[n]);
    this->radius.resize (this->num_levels);
    for (int rl = 0; rl < this->num_levels; ++ rl) {
      this->radius.at(rl) = radius[index2 (lsh, rl, n)];
    }
    
    assert (this->num_levels <= maxreflevels);
  }
  
  
  
  // Convert a coordinate location to an index location
  ivect
  rpos2ipos (rvect const & rpos,
             rvect const & origin, rvect const & scale,
             gh const & hh, int const rl)
  {
    DECLARE_CCTK_PARAMETERS;
    
    ivect const istride = hh.baseextents.at(0).at(rl).stride();
    
    ivect ipos = (ivect (floor ((rpos - origin) * scale / rvect(istride) +
                                static_cast<CCTK_REAL> (0.5))) *
                  istride);
    
    if (snap_to_coarse) {
      if (rl > 0) {
        ivect const cistride = hh.baseextents.at(0).at(rl - 1).stride();
        ipos = ipos / cistride * cistride;
      }
    }
    
    if (hh.refcent == cell_centered) {
#if 0
      if (rl > 0) {
        ivect const cistride = hh.baseextents.at(0).at(rl - 1).stride();
        
        ivect const offset = (cistride / istride + 1) % 2;
        
        assert (all (istride % offset == 0));
        ipos += offset;
      }
#endif
      assert (all (istride % 2 == 0));
      ipos += istride / 2;
    }
    
    return ipos;
  }
  
  // Convert a coordinate location to an index location, rounding in
  // the opposite manner as rpos2ipos
  ivect
  rpos2ipos1 (rvect const & rpos,
              rvect const & origin, rvect const & scale,
              gh const & hh, int const rl)
  {
    DECLARE_CCTK_PARAMETERS;
    
    ivect const istride = hh.baseextents.at(0).at(rl).stride();
    
    ivect ipos = (ivect (ceil ((rpos - origin) * scale / rvect(istride) -
                               static_cast<CCTK_REAL> (0.5))) *
                  istride);
    
    if (snap_to_coarse) {
      if (rl > 0) {
        ivect const cistride = hh.baseextents.at(0).at(rl - 1).stride();
        ipos = (ipos + cistride - 1) / cistride * cistride;
      }
    }
    
    if (hh.refcent == cell_centered) {
#if 0
      if (rl > 0) {
        ivect const cistride = hh.baseextents.at(0).at(rl - 1).stride();
        
        ivect const offset = (cistride / istride + 1) % 2;
        
        assert (all (istride % offset == 0));
        ipos -= offset;
      }
#endif
      assert (all (istride % 2 == 0));
      ipos -= istride / 2;
    }
    
    return ipos;
  }
  
  // Convert an index location to a coordinate location
  rvect
  ipos2rpos (ivect const & ipos,
             rvect const & origin, rvect const & scale,
             gh const & hh, int const rl)
  {
    return rvect(ipos) / scale + origin;
  }
  
  // Convert an index bbox to a coordinate bbox
  rbbox
  ibbox2rbbox (ibbox const & ib,
               rvect const & origin, rvect const & scale,
               gh const & hh, int const rl)
  {
    rvect const zero (0);
    return rbbox (ipos2rpos (ib.lower() , origin, scale, hh, rl),
                  ipos2rpos (ib.upper() , origin, scale, hh, rl),
                  ipos2rpos (ib.stride(), zero  , scale, hh, rl));
  }
  
  
  
  void
  get_physical_boundary (rvect & physical_lower,
                         rvect & physical_upper,
                         rvect & spacing)
  {
    rvect interior_lower, interior_upper;
    rvect exterior_lower, exterior_upper;
    if (CCTK_IsFunctionAliased ("MultiPatch_GetDomainSpecification")) {
      assert (Carpet::map >= 0);
      CCTK_INT const ierr = MultiPatch_GetDomainSpecification
        (Carpet::map, dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    } else if (CCTK_IsFunctionAliased ("GetDomainSpecification")) {
      CCTK_INT const ierr = GetDomainSpecification
        (dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    } else {
      assert (0);
    }
  }
  
  void
  calculate_exterior_boundary (rvect const & physical_lower,
                               rvect const & physical_upper,
                               rvect       & exterior_lower,
                               rvect       & exterior_upper,
                               rvect const & spacing)
  {
    rvect interior_lower, interior_upper;
    if (CCTK_IsFunctionAliased ("MultiPatch_ConvertFromPhysicalBoundary")) {
      assert (Carpet::map >= 0);
      CCTK_INT const ierr = MultiPatch_ConvertFromPhysicalBoundary
        (Carpet::map, dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    } else if (CCTK_IsFunctionAliased ("ConvertFromPhysicalBoundary")) {
      CCTK_INT const ierr =
        ConvertFromPhysicalBoundary
        (dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    } else {
      assert (0);
    }
  }
  
  
  
  extern "C" {
    CCTK_INT
    CarpetRegrid2_Regrid (CCTK_POINTER_TO_CONST const cctkGH_,
                          CCTK_POINTER          const superregss_,
                          CCTK_POINTER          const regsss_,
                          CCTK_INT              const force);
    
    CCTK_INT
    CarpetRegrid2_RegridMaps (CCTK_POINTER_TO_CONST const cctkGH_,
                              CCTK_POINTER          const superregsss_,
                              CCTK_POINTER          const regssss_,
                              CCTK_INT              const force);
  }
  
  
  
  void
  Regrid (cGH const * const cctkGH,
          gh::rregs & regss)
  {
    DECLARE_CCTK_PARAMETERS;
    
    if (verbose) CCTK_INFO ("Regridding");
    
    assert (is_singlemap_mode());
    gh const & hh = * vhh.at (Carpet::map);
    dh const & dd = * vdd.at (Carpet::map);
    
    //
    // Find extent of domain
    //
    
    // This requires that CoordBase is used
#warning "TODO: check this (for Carpet, and maybe also for CartGrid3D)"
#warning "TODO: (the check that these two are consistent should be in Carpet)"
    
#if 0
    typedef vect<vect<CCTK_INT,2>,3> jjvect;
    jjvect nboundaryzones;
    jjvect is_internal;
    jjvect is_staggered;
    jjvect shiftout;
    {
      CCTK_INT const ierr = GetBoundarySpecification
        (2*dim,
         & nboundaryzones[0][0],
         & is_internal[0][0],
         & is_staggered[0][0],
         & shiftout[0][0]);
      assert (not ierr);
    }
#endif
    
#if 0
    rvect physical_lower, physical_upper;
    rvect interior_lower, interior_upper;
    rvect exterior_lower, exterior_upper;
    rvect spacing;
    {
      CCTK_INT const ierr = GetDomainSpecification
        (dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    }
#endif
    rvect physical_lower, physical_upper;
    rvect spacing;
    get_physical_boundary (physical_lower, physical_upper,
                           spacing);
    
    // Adapt spacing for convergence level
    spacing *= ipow ((CCTK_REAL) mgfact, basemglevel);
    
#if 0
    {
      CCTK_INT const ierr =
        ConvertFromPhysicalBoundary
        (dim,
         & physical_lower[0], & physical_upper[0],
         & interior_lower[0], & interior_upper[0],
         & exterior_lower[0], & exterior_upper[0],
         & spacing[0]);
      assert (not ierr);
    }
#endif
    rvect exterior_lower, exterior_upper;
    calculate_exterior_boundary (physical_lower, physical_upper,
                                 exterior_lower, exterior_upper,
                                 spacing);
    
    //
    // Determine which refinement levels may be changed
    //
    int min_rl = 1;             // we cannot change the coarsest level
    if (freeze_unaligned_levels or freeze_unaligned_parent_levels) {
      while (min_rl < int(regss.size())) {
        // Increase min_rl until we find a level that can be changed
#if 0
#warning "think about this a bit more"
#warning "use this taper-checking also in Comm.cc"
        bool in_sync = true;
        if (freeze_unaligned_parent_levels) {
          int const parent_do_every =
            ipow(mgfact, mglevel) *
            (maxtimereflevelfact / timereffacts.at(min_rl-1));
          in_sync =
            cctkGH->cctk_iteration == 0 or
            (cctkGH->cctk_iteration-1) % parent_do_every == 0;
        }
#else
        bool in_sync = true;
        if (freeze_unaligned_parent_levels) {
          // Assume that non-existing levels are always aligned
          if (min_rl < reflevels) {
            CCTK_REAL const mytime =
              vtt.at(Carpet::map)->time (0, min_rl, mglevel);
            CCTK_REAL const parenttime =
              vtt.at(Carpet::map)->time (0, min_rl - 1, mglevel);
            CCTK_REAL const eps = 1.0e-12;
            in_sync =
              abs (mytime - parenttime) <= eps * abs (delta_time);
          }
        }
#endif
        int const do_every =
          ipow(mgfact, mglevel) *
          (maxtimereflevelfact / timereffacts.at(min_rl));
        bool const is_active =
          cctkGH->cctk_iteration == 0 or
          (cctkGH->cctk_iteration-1) % do_every == 0;
        if (is_active and in_sync) break;
        ++ min_rl;
      }
      if (verbose) {
        CCTK_VInfo (CCTK_THORNSTRING, "Regridding levels %d and up", min_rl);
      }
    }
    
    //
    // Calculate the union of the bounding boxes for all levels
    //
    
    rvect const origin (exterior_lower);
#warning "TODO: use hh.baseextents[0] [rl] instead of [0]"
    rvect const scale (rvect (hh.baseextents.at(0).at(0).stride()) / spacing);
    
    ivect const physical_ilower =
      rpos2ipos (physical_lower, origin, scale, hh, 0);
    ivect const physical_iupper =
      rpos2ipos1 (physical_upper, origin, scale, hh, 0);
    i2vect const physical_ibounds = i2vect (physical_ilower, physical_iupper);
    
    // The set of refined regions
    vector <ibboxset> regions (min_rl);
    
    // Set up coarse levels
    for (int rl = 0; rl < min_rl; ++ rl) {
      for (size_t c = 0; c < regss.at(rl).size(); ++ c) {
        regions.at(rl) += regss.at(rl).at(c).extent;
      }
      regions.at(rl).normalize();
    }
    
    // Refine only patch 0
    if (Carpet::map == 0) {
      // Loop over all centres
      for (int n = 0; n < num_centres; ++ n) {
        centre_description centre (cctkGH, n);
        if (centre.active) {
          
          // Loop over all levels for this centre
          for (int rl = min_rl; rl < centre.num_levels; ++ rl) {
            
            // Calculate a bbox for this region
            rvect const rmin = centre.position - centre.radius.at(rl);
            rvect const rmax = centre.position + centre.radius.at(rl);
            
            // Convert to an integer bbox
            ivect const istride = hh.baseextents.at(0).at(rl).stride();
            ivect const imin =
              rpos2ipos (rmin, origin, scale, hh, rl)
              - boundary_shiftout * istride;
            ivect const imax =
              rpos2ipos1 (rmax, origin, scale, hh, rl)
              + boundary_shiftout * istride;
            
            ibbox const region (imin, imax, istride);
            
            // Add this region to the list of regions
            if (static_cast <int> (regions.size()) < rl+1) {
              regions.resize (rl+1);
            }
            regions.at(rl) |= region;
            regions.at(rl).normalize();
            
          } // for rl
          
        } // if centre is active
      }   // for n
    }     // if map==0
    
    
    
    regss.resize (regions.size());
    
    assert (regions.size() > 0);
    for (int rl = regions.size() - 1; rl >= min_rl; -- rl) {
      
      // Sanity check
      assert (not regions.at(rl).empty());
      
      
      
      //
      // Ensure that this grid contains the next finer grid
      //
      if (ensure_proper_nesting) {
        if (rl < int(regions.size()) - 1) {
          
          assert (not regions.at(rl).empty());
          ibbox const coarse0 = * regions.at(rl).begin();
          
          i2vect const fdistance = dd.ghost_width;
          i2vect const cdistance =
            i2vect (min_distance + dd.prolongation_stencil_size());
          
          for (ibboxset::const_iterator ibb = regions.at(rl+1).begin();
               ibb != regions.at(rl+1).end();
               ++ ibb)
          {
            ibbox const & fbb = * ibb;
            
            bvect const lower_is_outer = fbb.lower() <= physical_ilower;
            bvect const upper_is_outer = fbb.upper() >= physical_iupper;
            b2vect const ob (lower_is_outer, upper_is_outer);
            
            ibbox const ebb = fbb.expand (i2vect (not ob) * fdistance);
            ibbox const cbb = ebb.expanded_for (coarse0);
            ibbox const ecbb = cbb.expand (i2vect (not ob) * cdistance);
            
            // Enlarge this level
            regions.at(rl) |= ecbb;
          }
          
          regions.at(rl).normalize();
          
        }
      } // if ensure proper nesting
      
      
      
      //
      // Add buffer zones
      //
      {
        ibboxset buffered;
        for (ibboxset::const_iterator ibb = regions.at(rl).begin();
             ibb != regions.at(rl).end();
             ++ ibb)
        {
          ibbox const & bb = * ibb;
          
          // bvect const lower_is_outer = bb.lower() <= physical_ilower;
          // bvect const upper_is_outer = bb.upper() >= physical_iupper;
          // 
          // b2vect const ob (lower_is_outer, upper_is_outer);
          // 
          // ibbox const bbb = bb.expand (i2vect (not ob) * dd.buffer_width);
          
          ibbox const bbb = bb.expand (dd.buffer_width);

          buffered |= bbb;
        }
        regions.at(rl) = buffered;
        regions.at(rl).normalize();
      }
      
      
      
      //
      // Check whether it would be worthwhile to combine all regions
      // into a single region
      //
      // TODO: Check this also for pairs of regions
      //
      // TODO: Check after clipping
      {
        ibbox single;
        for (ibboxset::const_iterator ibb = regions.at(rl).begin();
             ibb != regions.at(rl).end();
             ++ ibb)
        {
          ibbox const & bb = * ibb;
          single = single.expanded_containing (bb);
        }
        
        CCTK_REAL const regions_size
          = static_cast <CCTK_REAL> (regions.at(rl).size());
        CCTK_REAL const single_size
          = static_cast <CCTK_REAL> (single.size());
        
        // Would a single bbox be efficient enough?
        if (regions_size >= min_fraction * single_size) {
          // Combine the boxes
          regions.at(rl) = ibboxset (single);
        }
      }
      
      
      
      // Find the location of the outer boundary
      rvect const level_physical_lower = physical_lower;
      rvect const level_physical_upper = physical_upper;
      rvect const level_spacing = spacing / rvect (hh.reffacts.at(rl));
#if 0
      rvect level_interior_lower, level_interior_upper;
      rvect level_exterior_lower, level_exterior_upper;
      {
        CCTK_INT const ierr =
          ConvertFromPhysicalBoundary
          (dim,
           & level_physical_lower[0], & level_physical_upper[0],
           & level_interior_lower[0], & level_interior_upper[0],
           & level_exterior_lower[0], & level_exterior_upper[0],
           & level_spacing[0]);
        assert (not ierr);
      }
#endif
      rvect level_exterior_lower, level_exterior_upper;
      calculate_exterior_boundary (level_physical_lower, level_physical_upper,
                                   level_exterior_lower, level_exterior_upper,
                                   level_spacing);
      
      ivect const level_exterior_ilower =
        rpos2ipos (level_exterior_lower, origin, scale, hh, rl);
      ivect const level_exterior_iupper =
        rpos2ipos1 (level_exterior_upper, origin, scale, hh, rl);
      
      // Find the minimum necessary distance away from the outer
      // boundary due to buffer and ghost zones.  This is e.g. the
      // distance that the lower boundary of a bbox has to have from
      // the lower boundary.  This is in terms of grid points.
      i2vect const min_bnd_dist_away = dd.ghost_width;
      // Find the minimum necessary distance from the outer boundary
      // due to buffer and ghost zones.  This is e.g. the distance
      // that the upper boundary of a bbox has to have from the lower
      // boundary.  This is in terms of grid points.
      i2vect const min_bnd_dist_incl = dd.ghost_width;
      // TODO: The above is required only near symmetry boundaries.
      
      
      
      //
      // Clip at the outer boundary
      //
      {
        ibboxset clipped;
        for (ibboxset::const_iterator ibb = regions.at(rl).begin();
             ibb != regions.at(rl).end();
             ++ ibb)
        {
          ibbox const & bb = * ibb;
          
          // Clip boxes that extend outside the boundary.  Enlarge
          // boxes that are inside but too close to the outer
          // boundary.
          bvect const lower_is_outside_lower =
            bb.lower() - min_bnd_dist_away[0] * bb.stride() <= physical_ilower;
          // Remove bboxes that are completely outside.
          bvect const upper_is_outside_lower =
            bb.upper() < physical_ilower;
          // Enlarge bboxes that extend not far enough inwards.
          bvect const upper_is_almost_outside_lower =
            bb.upper() < physical_ilower + min_bnd_dist_incl[0] * bb.stride();
          
          // Ditto for the upper boundary.
          bvect const upper_is_outside_upper =
            bb.upper() + min_bnd_dist_away[1] * bb.stride() >= physical_iupper;
          bvect const lower_is_outside_upper =
            bb.lower() > physical_iupper;
          bvect const lower_is_almost_outside_upper =
            bb.lower() > physical_iupper - min_bnd_dist_incl[1] * bb.stride();
          
          assert (not any (lower_is_almost_outside_upper and
                           lower_is_outside_lower));
          assert (not any (upper_is_almost_outside_lower and
                           upper_is_outside_upper));
          
          if (any (upper_is_outside_lower or lower_is_outside_upper)) {
            // The box is completely outside.  Ignore it.
            continue;
          }
          
          ibbox const clipped_bb
            (either (lower_is_outside_lower,
                     level_exterior_ilower,
                     either (lower_is_almost_outside_upper,
                             (physical_iupper -
                              min_bnd_dist_incl[1] * bb.stride()),
                             bb.lower())),
             either (upper_is_outside_upper,
                     level_exterior_iupper,
                     either (upper_is_almost_outside_lower,
                             (physical_ilower +
                              min_bnd_dist_incl[0] * bb.stride()),
                             bb.upper())),
             bb.stride());
          if (not clipped_bb.is_contained_in (hh.baseextents.at(0).at(rl))) {
            ostringstream msg;
            msg << "Level " << rl << " of the refinement hierarchy is not contained in the simulation domain."
                << "  (There may be too many ghost of buffer zones.)"
                << "  One bbox is " << clipped_bb << "."
                << "  lower_is_outside_lower=" << lower_is_outside_lower
                << "  upper_is_outside_upper=" << upper_is_outside_upper
                << "  lower_is_almost_outside_upper=" << lower_is_almost_outside_upper
                << "  upper_is_almost_outside_lower=" << upper_is_almost_outside_lower
                << "  level_exterior_ilower=" << level_exterior_ilower
                << "  level_exterior_iupper=" << level_exterior_iupper
                << "  physical_ilower=" << physical_ilower
                << "  physical_iupper=" << physical_iupper
                << "  baseextent=" << hh.baseextents.at(0).at(rl);
            CCTK_WARN (CCTK_WARN_ABORT, msg.str().c_str());
          }
          assert (clipped_bb.is_contained_in (hh.baseextents.at(0).at(rl)));
          
          clipped |= clipped_bb;
          
        } // for ibb
        
        regions.at(rl) = clipped;
        regions.at(rl).normalize();
      }
      
      
      
      //
      // Make the boxes rotating-90 symmetric
      //
      if (symmetry_rotating90) {
        assert (0);            // There is also a paramwarn about this
      }
      
      
      
      //
      // Make the boxes rotating-180 symmetric
      //
      if (symmetry_rotating180) {
        
        ibboxset added;
        for (ibboxset::const_iterator ibb = regions.at(rl).begin();
             ibb != regions.at(rl).end();
             ++ ibb)
        {
          ibbox const & bb = * ibb;
          
          bvect const lower_is_outside_lower =
            bb.lower() - min_bnd_dist_away[0] * bb.stride() <= physical_ilower;
          
          if (lower_is_outside_lower[0]) {
            ivect const ilo = bb.lower();
            ivect const iup = bb.upper();
            ivect const istr = bb.stride();
            
            // Origin
            rvect const axis (physical_lower[0],
                              (physical_lower[1] + physical_upper[1]) / 2,
                              physical_lower[2]); // z component is unused
            ivect const iaxis0 = rpos2ipos  (axis, origin, scale, hh, rl);
            assert (all (iaxis0 % istr == 0));
            ivect const iaxis1 = rpos2ipos1 (axis, origin, scale, hh, rl);
            assert (all (iaxis1 % istr == 0));
            ivect const offset = iaxis1 - iaxis0;
            assert (all (offset % istr == 0));
            assert (all (offset >= 0 and offset < 2*istr));
            assert (all ((iaxis0 + iaxis1 - offset) % (2*istr) == 0));
            ivect const iaxis = (iaxis0 + iaxis1 - offset) / 2;
            
            // Mirror about the y axis, cutting off most of the extent
            // in the positive x direction
            ivect const new_ilo (ilo[0],
                                 (2*iaxis[1]+offset[1]) - iup[1],
                                 ilo[2]);
            ivect const new_iup ((2*iaxis[0]+offset[0]) - ilo[0],
                                 (2*iaxis[1]+offset[1]) - ilo[1],
                                 iup[2]);
            ivect const new_istr (istr);
            
            ibbox const new_bb (new_ilo, new_iup, new_istr);
            assert (new_bb.is_contained_in (hh.baseextents.at(0).at(rl)));
            
            added |= new_bb;
          }
        }
        
        regions.at(rl) |= added;
        regions.at(rl).normalize();
        
      } // if symmetry_rotating180
      
      
      
      //
      // Ensure that this grid is contained in the domain
      //
      assert (regions.at(rl) <= hh.baseextents.at(0).at(rl));
      
      
      
      //
      // Create a vector of bboxes for this level
      //
      {
        gh::cregs regs;
        regs.reserve (regions.at(rl).setsize());
        for (ibboxset::const_iterator ibb = regions.at(rl).begin();
             ibb != regions.at(rl).end();
             ++ ibb)
        {
          ibbox const & bb = * ibb;
          assert (bb.is_contained_in (hh.baseextents.at(0).at(rl)));
          
          bvect const lower_is_outer = bb.lower() <= physical_ilower;
          bvect const upper_is_outer = bb.upper() >= physical_iupper;
          
          b2vect const ob (lower_is_outer, upper_is_outer);
          
          region_t reg;
          reg.extent = bb;
          reg.map = Carpet::map;
          reg.outer_boundaries = ob;
          regs.push_back (reg);
        }
        
        regss.at(rl) = regs;
      }
      
    } // for rl
    
    //
    // Check whether all grids are contained in the next coarser grid
    //
    for (int rl = regions.size() - 1; rl >= min_rl; -- rl) {
      
      assert (not regions.at(rl-1).empty());
      ibbox const coarse0 = * regions.at(rl-1).begin();
      
      i2vect const fdistance = dd.ghost_width;
      i2vect const cdistance =
        i2vect (min_distance + dd.prolongation_stencil_size());
      
      bool is_properly_nested = true;
      
      for (ibboxset::const_iterator ibb = regions.at(rl).begin();
           ibb != regions.at(rl).end();
           ++ ibb)
      {
        ibbox const & fbb = * ibb;
        
        bvect const lower_is_outer = fbb.lower() <= physical_ilower;
        bvect const upper_is_outer = fbb.upper() >= physical_iupper;
        b2vect const ob (lower_is_outer, upper_is_outer);
        
        ibbox const cbb = fbb.expanded_for (coarse0);
        
        is_properly_nested = is_properly_nested and cbb <= regions.at(rl-1);
      }
      
      if (not is_properly_nested) {
        ostringstream msg;
        msg << "Level " << rl << " of the refinement hierarchy is not properly nested.  It is not contained in level " << (rl-1) << ".";
        CCTK_WARN (CCTK_WARN_ALERT, msg.str().c_str());
      }
    } // for rl
    
  }
  
  
  
  CCTK_INT
  CarpetRegrid2_Regrid (CCTK_POINTER_TO_CONST const cctkGH_,
                        CCTK_POINTER          const superregss_,
                        CCTK_POINTER          const regsss_,
                        CCTK_INT              const force)
  {
    cGH const * const cctkGH = static_cast <cGH const *> (cctkGH_);
    
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    
    char const * const where = "CarpetRegrid2::Regrid";
    static Carpet::Timer timer (where);
    timer.start();
    
    assert (is_singlemap_mode());
    
    // Decide whether to change the grid hierarchy
    bool do_recompose;
    if (force) {
      do_recompose = true;
    } else {
      if (regrid_every == -1) {
        do_recompose = false;
      } else if (regrid_every == 0) {
        do_recompose = cctk_iteration == 0;
      } else {
        // Regrid at most once per iteration
        do_recompose =
          (cctk_iteration == 0 or
           (cctk_iteration > 0 and
            (cctk_iteration - 1) % regrid_every == 0 and
            (cctk_iteration > * last_iteration or
             (cctk_iteration == * last_iteration and
              Carpet::map > * last_map))));
      }
    }
    
    if (verbose) {
      if (do_recompose) {
        for (int n = 0; n < num_centres; ++ n) {
          if (active[n]) {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Centre %d is at position [%g,%g,%g]",
                        n + 1,
                        static_cast <double> (position_x[n]),
                        static_cast <double> (position_y[n]),
                        static_cast <double> (position_z[n]));
          } else {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Centre %d is not active", n);
          }
        }
      }
    }
    
    if (do_recompose and * last_iteration != -1) {
      
      // Regrid only if the regions have changed sufficiently
      do_recompose = false;
      for (int n = 0; n < num_centres; ++ n) {
        
        // Regrid if a region became active or inactive
        do_recompose = active[n] != old_active[n];
        if (do_recompose) break;
        
        // Check only active regions
        if (not active[n]) continue;
        
        // Regrid if the number of levels changed
        do_recompose = num_levels[n] != old_num_levels[n];
        if (do_recompose) break;
        
        // Regrid if the positions have changed sufficiently
        CCTK_REAL const dist2 =
          pow (position_x[n] - old_position_x[n], 2) +
          pow (position_y[n] - old_position_y[n], 2) +
          pow (position_z[n] - old_position_z[n], 2);
        CCTK_REAL mindist;
        switch (n) {
        case 0: mindist = movement_threshold_1; break;
        case 1: mindist = movement_threshold_2; break;
        case 2: mindist = movement_threshold_3; break;
        case 3: mindist = movement_threshold_4; break;
        case 4: mindist = movement_threshold_5; break;
        case 5: mindist = movement_threshold_6; break;
        case 6: mindist = movement_threshold_7; break;
        case 7: mindist = movement_threshold_8; break;
        case 8: mindist = movement_threshold_9; break;
        case 9: mindist = movement_threshold_10; break;
        default: assert (0);
        }
        do_recompose = dist2 >= pow (mindist, 2);
        if (do_recompose) break;
        
        // Regrid if the radii have changed sufficiently
        CCTK_REAL const dr = abs (radius[n] - old_radius[n]);
        CCTK_REAL mindr;
        switch (n) {
        case 0: mindr = radius_change_threshold_1; break;
        case 1: mindr = radius_change_threshold_2; break;
        case 2: mindr = radius_change_threshold_3; break;
        case 3: mindr = radius_change_threshold_4; break;
        case 4: mindr = radius_change_threshold_5; break;
        case 5: mindr = radius_change_threshold_6; break;
        case 6: mindr = radius_change_threshold_7; break;
        case 7: mindr = radius_change_threshold_8; break;
        case 8: mindr = radius_change_threshold_9; break;
        case 9: mindr = radius_change_threshold_10; break;
        default: assert (0);
        }
        do_recompose = dr >= mindr;
        if (do_recompose) break;
        
      } // for n
      if (verbose) {
        if (not do_recompose) {
          CCTK_INFO
            ("Refined regions have not changed sufficiently; skipping regridding");
        }
      }
    }
    
    if (do_recompose) {
      * last_iteration = cctk_iteration;
      * last_map = Carpet::map;
    }
    
    if (do_recompose) {
      
      gh::rregs & superregss = * static_cast <gh::rregs *> (superregss_);
      gh::mregs & regsss     = * static_cast <gh::mregs *> (regsss_);
      
      Regrid (cctkGH, superregss);
      
      // Make multiprocessor aware
      vector <vector <region_t> > regss (superregss.size());
      for (size_t rl = 0; rl < regss.size(); ++ rl) {
        SplitRegions (cctkGH, superregss.at(rl), regss.at(rl));
      } // for rl
      
      // Make multigrid aware
      MakeMultigridBoxes (cctkGH, Carpet::map, regss, regsss);
      
      // Remember current positions
      for (int n = 0; n < num_centres; ++ n) {
        old_active[n] = active[n];
        
        old_num_levels[n] = num_levels[n];
        
        old_position_x[n] = position_x[n];
        old_position_y[n] = position_y[n];
        old_position_z[n] = position_z[n];
        
        old_radius[n] = radius[n];
      }
      
    } // if do_recompose
    
    timer.stop();
    
    return do_recompose;
  }
  
  
  
  CCTK_INT
  CarpetRegrid2_RegridMaps (CCTK_POINTER_TO_CONST const cctkGH_,
                            CCTK_POINTER          const superregsss_,
                            CCTK_POINTER          const regssss_,
                            CCTK_INT              const force)
  {
    cGH const * const cctkGH = static_cast <cGH const *> (cctkGH_);
    
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    
    char const * const where = "CarpetRegrid2::RegridMaps";
    static Carpet::Timer timer (where);
    timer.start();
    
    assert (is_level_mode());
    
    // Decide whether to change the grid hierarchy
    assert (* last_map == -1);  // ensure this remains unused
    bool do_recompose;
    if (force) {
      do_recompose = true;
    } else {
      if (regrid_every == -1) {
        do_recompose = false;
      } else if (regrid_every == 0) {
        do_recompose = cctk_iteration == 0;
      } else {
        // Regrid at most once per iteration
        do_recompose =
          (cctk_iteration == 0 or
           (cctk_iteration > 0 and
            (cctk_iteration - 1) % regrid_every == 0 and
            cctk_iteration > * last_iteration));
      }
    }
    
    if (verbose) {
      if (do_recompose) {
        for (int n = 0; n < num_centres; ++ n) {
          if (active[n]) {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Centre %d is at position [%g,%g,%g]",
                        n + 1,
                        static_cast <double> (position_x[n]),
                        static_cast <double> (position_y[n]),
                        static_cast <double> (position_z[n]));
          } else {
            CCTK_VInfo (CCTK_THORNSTRING,
                        "Centre %d is not active", n);
          }
        }
      }
    }
    
    if (do_recompose and * last_iteration != -1) {
      
      // Regrid only if the regions have changed sufficiently
      do_recompose = false;
      for (int n = 0; n < num_centres; ++ n) {
        
        // Regrid if a region became active or inactive
        do_recompose = active[n] != old_active[n];
        if (do_recompose) break;
        
        // Check only active regions
        if (not active[n]) continue;
        
        // Regrid if the number of levels changed
        do_recompose = num_levels[n] != old_num_levels[n];
        if (do_recompose) break;
        
        // Regrid if the positions have changed sufficiently
        CCTK_REAL const dist2 =
          pow (position_x[n] - old_position_x[n], 2) +
          pow (position_y[n] - old_position_y[n], 2) +
          pow (position_z[n] - old_position_z[n], 2);
        CCTK_REAL mindist;
        switch (n) {
        case 0: mindist = movement_threshold_1; break;
        case 1: mindist = movement_threshold_2; break;
        case 2: mindist = movement_threshold_3; break;
        case 3: mindist = movement_threshold_4; break;
        case 4: mindist = movement_threshold_5; break;
        case 5: mindist = movement_threshold_6; break;
        case 6: mindist = movement_threshold_7; break;
        case 7: mindist = movement_threshold_8; break;
        case 8: mindist = movement_threshold_9; break;
        case 9: mindist = movement_threshold_10; break;
        default: assert (0);
        }
        do_recompose = dist2 >= pow (mindist, 2);
        if (do_recompose) break;
        
        // Regrid if the radii have changed sufficiently
        CCTK_REAL const dr = abs (radius[n] - old_radius[n]);
        CCTK_REAL mindr;
        switch (n) {
        case 0: mindr = radius_change_threshold_1; break;
        case 1: mindr = radius_change_threshold_2; break;
        case 2: mindr = radius_change_threshold_3; break;
        case 3: mindr = radius_change_threshold_4; break;
        case 4: mindr = radius_change_threshold_5; break;
        case 5: mindr = radius_change_threshold_6; break;
        case 6: mindr = radius_change_threshold_7; break;
        case 7: mindr = radius_change_threshold_8; break;
        case 8: mindr = radius_change_threshold_9; break;
        case 9: mindr = radius_change_threshold_10; break;
        default: assert (0);
        }
        do_recompose = dr >= mindr;
        if (do_recompose) break;
        
      } // for n
      if (verbose) {
        if (not do_recompose) {
          CCTK_INFO
            ("Refined regions have not changed sufficiently; skipping regridding");
        }
      }
    }
    
    if (do_recompose) {
      * last_iteration = cctk_iteration;
    }
    
    if (do_recompose) {
      
      vector <gh::rregs> & superregsss =
        * static_cast <vector <gh::rregs>  *> (superregsss_);
      vector <gh::mregs> & regssss =
        * static_cast <vector <gh::mregs>  *> (regssss_);
      
      BEGIN_MAP_LOOP (cctkGH, CCTK_GF) {
        Regrid (cctkGH, superregsss.at(Carpet::map));
      } END_MAP_LOOP;
      
      vector< vector <vector <region_t> > > regsss (maps);
      
      // Count levels
      vector <int> rls (maps);
      for (int m = 0; m < maps; ++ m) {
        rls.at(m) = superregsss.at(m).size();
      }
      int maxrl = 0;
      for (int m = 0; m < maps; ++ m) {
        maxrl = max (maxrl, rls.at(m));
      }
      // All maps must have the same number of levels
      for (int m = 0; m < maps; ++ m) {
        superregsss.at(m).resize (maxrl);
        regsss.at(m).resize (maxrl);
      }
      
      // Make multiprocessor aware
      for (int rl = 0; rl < maxrl; ++ rl) {
        vector <vector <region_t> > superregss (maps);
        for (int m = 0; m < maps; ++ m) {
          superregss.at(m) = superregsss.at(m).at(rl);
        }
        vector <vector <region_t> > regss (maps);
        SplitRegionsMaps (cctkGH, superregss, regss);
        
        for (int m = 0; m < maps; ++ m) {
          superregsss.at(m).at(rl) = superregss.at(m);
          regsss.at(m).at(rl) = regss.at(m);
        }
      } // for rl
      
      // Make multigrid aware
      MakeMultigridBoxesMaps (cctkGH, regsss, regssss);
      
      // Remember current positions
      for (int n = 0; n < num_centres; ++ n) {
        old_active[n] = active[n];
        
        old_num_levels[n] = num_levels[n];
        
        old_position_x[n] = position_x[n];
        old_position_y[n] = position_y[n];
        old_position_z[n] = position_z[n];
        
        old_radius[n] = radius[n];
      }
      
    } // if do_recompose
    
    timer.stop();
    
    return do_recompose;
  }
  
  
  
} // namespace CarpetRegrid2