aboutsummaryrefslogtreecommitdiff
path: root/Carpet/CarpetLib/src/prolongate_3d_real8_weno.F90
blob: acc0e75777a859579b9d2b4d22aa847abc11e0e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#ifndef OMIT_F90
!!$     -*-Fortran-*-

#include "cctk.h"


!!$ This routine performs "WENO" prolongation. It is intended to be used 
!!$ with GFs that are not expected to be smooth, particularly those
!!$ that must also obey certain constraints. The obvious example is the 
!!$ density in hydrodynamics, which may be discontinuous yet must be
!!$ strictly positive.
!!$
!!$ To ensure that this prolongation method is used you should add the
!!$ tag
!!$
!!$      tags='Prolongation="WENO"'
!!$
!!$ to the interface.ccl on the appropriate group.
!!$
!!$ This applies WENO2 type limiting to the slope, checking over the
!!$ entire coarse grid cell for the least oscillatory quadratic in each 
!!$ direction. If the slope changes sign over the extrema, linear
!!$ interpolation is used instead.


function weno1d(q)
  
  implicit none

  CCTK_REAL8 :: weno1d
  CCTK_REAL8 :: q(5)
  CCTK_REAL8 :: zero, one, two, three, four, five, eight, ten, eleven, &
      thirteen, fifteen, nineteen, twentyfive, thirtyone, epsilon
  parameter (zero       = 0)
  parameter (one        = 1)
  parameter (two        = 2)
  parameter (three      = 3)
  parameter (four       = 4)
  parameter (five       = 5)
  parameter (eight      = 8)
  parameter (ten        = 10)
  parameter (eleven     = 11)
  parameter (thirteen   = 13)
  parameter (fifteen    = 15)
  parameter (nineteen   = 19)
  parameter (twentyfive = 25)
  parameter (thirtyone  = 31)
  parameter (epsilon    = 0.000000001)

  CCTK_REAL8, dimension(0:2,0:2) :: c
  CCTK_REAL8 :: wtildesum, qmax, qmin
  CCTK_REAL8, dimension(0:2) :: d, beta, wtilde, w, vr
  logical, dimension(0:2) :: hacked

  integer :: j, k

!!$  Linear weights

  d(0) = three / ten
  d(1) = three / five
  d(2) = one   / ten

  c(0,0) = three / eight
  c(0,1) = three / four
  c(0,2) = -one / eight
  c(1,0) = -one / eight
  c(1,1) = three / four
  c(1,2) = three / eight
  c(2,0) = three / eight
  c(2,1) = -five / four
  c(2,2) = fifteen / eight

!!$  Substencils

  do j = 0, 2
    vr(j) = 0.d0
    do k = 0, 2
      vr(j) = vr(j) + c(j, k) * q(3 - j + k)
    end do
  end do
  
!!$  Nonlinear weights

  beta(0) = (ten * q(3)**2 - &
       thirtyone * q(3) * q(4) + &
       twentyfive * q(4)**2 + &
       eleven * q(3) * q(5) - &
       nineteen * q(4) * q(5) + &
       four * q(5)**2) / three
  beta(1) = (four * q(2)**2 - &
       thirteen * q(2) * q(3) + &
       thirteen * q(3)**2 + & 
       five * q(2) * q(4) - & 
       thirteen * q(3) * q(4) + &
       four * q(4)**2) / three
  beta(2) = (four * q(1)**2 - &
       nineteen * q(1) * q(2) + &
       twentyfive * q(2)**2 + &
       eleven * q(1) * q(3) - &
       thirtyone * q(2) * q(3) + & 
       ten * q(3)**2) / three

  do j = 0, 2
    wtilde(j) = d(j) / (epsilon + beta(j))**2
  end do

!!$  Hack the weights if outside the range

  qmax = maxval(q)
  qmin = minval(q)

  do j = 0, 2
    hacked(j) = .false.
    if ( (qmax - vr(j)) * (vr(j) - qmin) < 0.d0 ) then
      wtilde(j) = 0.d0
      hacked(j) = .true.
    end if
  end do

!!$  If all weights were hacked we cannot get a good interpolant;
!!$  drop to linear interpolation
  
  if (hacked(0).and.hacked(1).and.hacked(2)) then

!!$    Linear interpolation
    weno1d = 0.5d0 * (q(3) + q(4))

  else
  
    wtildesum = wtilde(0) + wtilde(1) + wtilde(2)
    w = wtilde / wtildesum

    weno1d = 0.d0

    do j = 0, 2
      weno1d = weno1d + w(j) * vr(j)
    end do

  end if

!!$  if (.not.( (weno1d .ge. 0.d0 ).or.(weno1d .le. 0.d0) ) ) then
!!$    write(*,*) 'Error?', weno1d
!!$    write(*,*) 'Done weno1d', weno1d, hacked
!!$    write(*,*) 'Substencil',vr
!!$    write(*,*) 'Weights', w
!!$    write(*,*) 'Indicators', beta
!!$    write(*,*) 'Input', q
!!$  end if
  
!!$  write(*,*) 'Done weno1d', weno1d, hacked
!!$  write(*,*) 'Substencil',vr
!!$  write(*,*) 'Weights', w
!!$  write(*,*) 'Indicators', beta
!!$  write(*,*) 'Input', q
  
end function weno1d

subroutine prolongate_3d_real8_weno ( &
     src, srcipadext, srcjpadext, srckpadext, srciext, srcjext, srckext, &
     dst, dstipadext, dstjpadext, dstkpadext, dstiext, dstjext, dstkext, &
     srcbbox, dstbbox, regbbox)

  implicit none

  CCTK_REAL8 one
  parameter (one = 1)

  integer srcipadext, srcjpadext, srckpadext
  integer srciext, srcjext, srckext
  CCTK_REAL8 src(srcipadext,srcjpadext,srckpadext)
  integer dstipadext, dstjpadext, dstkpadext
  integer dstiext, dstjext, dstkext
  CCTK_REAL8 dst(dstipadext,dstjpadext,dstkpadext)
!!$     bbox(:,1) is lower boundary (inclusive)
!!$     bbox(:,2) is upper boundary (inclusive)
!!$     bbox(:,3) is stride
  integer srcbbox(3,3), dstbbox(3,3), regbbox(3,3)

  integer offsetlo, offsethi

  integer regiext, regjext, regkext

  integer dstifac, dstjfac, dstkfac

  integer srcioff, srcjoff, srckoff
  integer dstioff, dstjoff, dstkoff

  integer i, j, k
  integer i0, j0, k0
  integer fi, fj, fk
  integer ii, jj, kk
  integer d

  CCTK_REAL8, dimension(0:4,0:4) :: tmp1
  CCTK_REAL8, dimension(0:4) :: tmp2

  external weno1d
  CCTK_REAL8 weno1d

  CCTK_REAL8 half, zero
  parameter (half = 0.5)
  parameter (zero = 0)

  do d=1,3
    if (srcbbox(d,3).eq.0 .or. dstbbox(d,3).eq.0 &
         .or. regbbox(d,3).eq.0) then
      call CCTK_WARN (0, "Internal error: stride is zero")
    end if
    if (srcbbox(d,3).le.regbbox(d,3) &
         .or. dstbbox(d,3).ne.regbbox(d,3)) then
      call CCTK_WARN (0, "Internal error: strides disagree")
    end if
    if (mod(srcbbox(d,3), dstbbox(d,3)).ne.0) then
      call CCTK_WARN (0, "Internal error: destination strides are not integer multiples of the source strides")
    end if
    if (mod(srcbbox(d,1), srcbbox(d,3)).ne.0 &
         .or. mod(dstbbox(d,1), dstbbox(d,3)).ne.0 &
         .or. mod(regbbox(d,1), regbbox(d,3)).ne.0) then
      call CCTK_WARN (0, "Internal error: array origins are not integer multiples of the strides")
    end if
    if (regbbox(d,1).gt.regbbox(d,2)) then
!!$     This could be handled, but is likely to point to an error elsewhere
      call CCTK_WARN (0, "Internal error: region extent is empty")
    end if
    regkext = (regbbox(d,2) - regbbox(d,1)) / regbbox(d,3) + 1
    dstkfac = srcbbox(d,3) / dstbbox(d,3)
    srckoff = (regbbox(d,1) - srcbbox(d,1)) / dstbbox(d,3)
    offsetlo = regbbox(d,3)
    if (mod(srckoff + 0, dstkfac).eq.0) then
      offsetlo = 0
      if (regkext.gt.1) then
        offsetlo = regbbox(d,3)
      end if
    end if
    offsethi = regbbox(d,3)
    if (mod(srckoff + regkext-1, dstkfac).eq.0) then
      offsethi = 0
      if (regkext.gt.1) then
        offsethi = regbbox(d,3)
      end if
    end if
    if (regbbox(d,1)-offsetlo.lt.srcbbox(d,1) &
         .or. regbbox(d,2)+offsethi.gt.srcbbox(d,2) &
         .or. regbbox(d,1).lt.dstbbox(d,1) &
         .or. regbbox(d,2).gt.dstbbox(d,2)) then
      call CCTK_WARN (0, "Internal error: region extent is not contained in array extent")
    end if
  end do

  if (srciext.ne.(srcbbox(1,2)-srcbbox(1,1))/srcbbox(1,3)+1 &
       .or. srcjext.ne.(srcbbox(2,2)-srcbbox(2,1))/srcbbox(2,3)+1 &
       .or. srckext.ne.(srcbbox(3,2)-srcbbox(3,1))/srcbbox(3,3)+1 &
       .or. dstiext.ne.(dstbbox(1,2)-dstbbox(1,1))/dstbbox(1,3)+1 &
       .or. dstjext.ne.(dstbbox(2,2)-dstbbox(2,1))/dstbbox(2,3)+1 &
       .or. dstkext.ne.(dstbbox(3,2)-dstbbox(3,1))/dstbbox(3,3)+1) then
    call CCTK_WARN (0, "Internal error: array sizes don't agree with bounding boxes")
  end if

  regiext = (regbbox(1,2) - regbbox(1,1)) / regbbox(1,3) + 1
  regjext = (regbbox(2,2) - regbbox(2,1)) / regbbox(2,3) + 1
  regkext = (regbbox(3,2) - regbbox(3,1)) / regbbox(3,3) + 1

  dstifac = srcbbox(1,3) / dstbbox(1,3)
  dstjfac = srcbbox(2,3) / dstbbox(2,3)
  dstkfac = srcbbox(3,3) / dstbbox(3,3)

  srcioff = (regbbox(1,1) - srcbbox(1,1)) / dstbbox(1,3)
  srcjoff = (regbbox(2,1) - srcbbox(2,1)) / dstbbox(2,3)
  srckoff = (regbbox(3,1) - srcbbox(3,1)) / dstbbox(3,3)

  dstioff = (regbbox(1,1) - dstbbox(1,1)) / dstbbox(1,3)
  dstjoff = (regbbox(2,1) - dstbbox(2,1)) / dstbbox(2,3)
  dstkoff = (regbbox(3,1) - dstbbox(3,1)) / dstbbox(3,3)

!!$     Loop over fine region

  !$omp parallel do collapse(3) private(i,j,k, i0,fi,j0,fj,k0,fk, tmp1,tmp2, ii,jj,kk)
  do k = 0, regkext-1
    do j = 0, regjext-1
      do i = 0, regiext-1

        i0 = (srcioff + i) / dstifac
        fi = mod(srcioff + i, dstifac)
        j0 = (srcjoff + j) / dstjfac
        fj = mod(srcjoff + j, dstjfac)
        k0 = (srckoff + k) / dstkfac
        fk = mod(srckoff + k, dstkfac)

!!$        Where is the fine grid point w.r.t the coarse grid?

        select case (fi + 10*fj + 100*fk)
        case (0)
!!$            On a coarse grid point exactly!

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               src(i0+1,j0+1,k0+1)

        case (1)
!!$          Interpolate only in x

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(src(i0-1:i0+3,j0+1,k0+1))

        case (10)
!!$          Interpolate only in y

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(src(i0+1,j0-1:j0+3,k0+1))

        case (11)
!!$          Interpolate only in x and y

          do jj = 0, 4
            tmp2(jj) = weno1d(src(i0-1:i0+3,j0+jj-1,k0+1))
          end do

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(tmp2(0:4))

        case (100)
!!$          Interpolate only in z

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(src(i0+1,j0+1,k0-1:k0+3))

        case (101)
!!$          Interpolate only in x and z

          do kk = 0, 4
            tmp2(kk) = weno1d(src(i0-1:i0+3,j0+1,k0+kk-1))
          end do

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(tmp2(0:4))

        case (110)
!!$          Interpolate only in y and z

          do kk = 0, 4
            tmp2(kk) = weno1d(src(i0+1,j0-1:j0+3,k0+kk-1))
          end do

          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(tmp2(0:4))

        case (111)
!!$          Interpolate in all of x, y, and z

          do jj = 0, 4
            do kk = 0, 4
              tmp1(jj,kk) = weno1d(src(i0-1:i0+3,j0+jj-1,k0+kk-1))
            end do
          end do
          do ii = 0, 4
            tmp2(ii) = weno1d(tmp1(0:4,ii))
          end do
          
          dst (dstioff+i+1, dstjoff+j+1, dstkoff+k+1) = &
               weno1d(tmp2(0:4))

        case default
          call CCTK_ERROR("Internal error in WENO prolongation. Should only be used with refinement factor 2!")
        end select

      end do
    end do
  end do

end subroutine prolongate_3d_real8_weno
#endif	/* !OMIT_F90 */