aboutsummaryrefslogtreecommitdiff
path: root/Carpet/CarpetLib/src/commstate.cc
blob: b770a706a7183ff2b93fbfffc09cbe1fcc3b8fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include <cassert>
#include <cstring>

#include "cctk.h"
#include "cctk_Parameters.h"

#include "bbox.hh"
#include "defs.hh"
#include "dist.hh"
#include "vect.hh"

#include "commstate.hh"
#include "timestat.hh"



using namespace std;
using namespace CarpetLib;



// Communication state control
comm_state::comm_state ()
{
  // If CarpetLib::use_collective_communication_buffers is set to true,
  // this comm_state object will use collective communications,
  // i.e., it will step through
  //   state_get_buffer_sizes
  //   state_fill_send_buffers
  //   state_empty_recv_buffers
  //
  // If CarpetLib::use_collective_communication_buffers is false
  // then individual communications on single components are used
  // by stepping through
  //   state_post
  //   state_wait

  DECLARE_CCTK_PARAMETERS;

  static Timer timer ("commstate::create");
  timer.start ();
  thestate = use_collective_communication_buffers ?
             state_get_buffer_sizes : state_post;

  typebufs.resize (dist::c_ndatatypes());
  for (size_t type = 0; type < typebufs.size(); type++) {
    typebufs[type].procbufs.resize(dist::size());
  }

#define INSTANTIATE(T)                                                 \
  {                                                                    \
    T dummy;                                                           \
    int type = dist::c_datatype (dummy);                               \
    typebufs.AT(type).datatypesize = sizeof (dummy);                   \
    typebufs.AT(type).mpi_datatype = dist::datatype (dummy);           \
  }
#include "instantiate"
#undef INSTANTIATE

  recvbuffers_ready.resize (dist::c_ndatatypes() * dist::size());
  srequests.resize (dist::c_ndatatypes() * dist::size(), MPI_REQUEST_NULL);
  rrequests.resize (dist::c_ndatatypes() * dist::size(), MPI_REQUEST_NULL);
  
  timer.stop (0);
}


void comm_state::step ()
{
  DECLARE_CCTK_PARAMETERS;
  static Timer total ("commstate::step");
  total.start ();
  assert (thestate != state_done);
  switch (thestate) {
    case state_post:
      // After all sends/recvs have been posted in 'state_post'
      // now wait for their completion in 'state_wait'.
      thestate = state_wait;
      break;

    case state_wait:
      thestate = state_done;
      break;

    case state_get_buffer_sizes:
      // The sizes of the collective communication buffers are known
      // so now allocate them.
      // The receive operations are also posted here already
      // (a clever MPI layer may take advantage of such early posting).
      num_posted_recvs = num_completed_recvs = 0;

      for (int proc1 = 0; proc1 < dist::size(); ++ proc1) {
        size_t const proc =
          interleave_communications
          ? (proc1 + dist::rank()) % dist::size()
          : proc1;
        
        for (size_t type = 0; type < typebufs.size(); type++) {
          
          // skip unused datatype buffers
          if (not typebufs[type].in_use) continue;

          int datatypesize = typebufs[type].datatypesize;
          procbufdesc& procbuf = typebufs[type].procbufs[proc];

          procbuf.sendbufbase = new char[procbuf.sendbufsize*datatypesize];
          procbuf.recvbufbase = new char[procbuf.recvbufsize*datatypesize];
          // TODO: this may be a bit extreme, and it is only for
          // internal consistency checking
          if (poison_new_memory) {
            memset (procbuf.sendbufbase, poison_value, procbuf.sendbufsize*datatypesize);
            memset (procbuf.recvbufbase, poison_value, procbuf.recvbufsize*datatypesize);
          }
          procbuf.sendbuf = procbuf.sendbufbase;
          procbuf.recvbuf = procbuf.recvbufbase;

          if (procbuf.recvbufsize > 0) {
            static Timer timer ("commstate_sizes_irecv");
            timer.start ();
            int const tag =
              vary_tags
              ? (dist::rank() + dist::size() * (proc + dist::size() * type)) % 32768
              : type;
            MPI_Irecv (procbuf.recvbufbase, procbuf.recvbufsize,
                       typebufs[type].mpi_datatype, proc, tag,
                       dist::comm(), &rrequests[dist::size()*type + proc]);
            timer.stop (0);
            num_posted_recvs++;
          }
        }
      }

      if (barrier_between_stages) {
        // Add a barrier, to try to ensure that all Irecvs are posted
        // before the first Isends are made
        // (Alternative: Use MPI_Alltoallv instead)
        MPI_Barrier (dist::comm());
      }

      // Now go and get the send buffers filled with data.
      // Once a buffer is full it will be posted right away
      // (see gdata::copy_into_sendbuffer() and
      //  gdata::interpolate_into_sendbuffer()).
      thestate = state_fill_send_buffers;
      break;

    case state_fill_send_buffers:
      if (combine_sends) {
        // Send the data.  Do not send them sequentially, but try to
        // intersperse the communications
        for (int proc1 = 0; proc1 < dist::size(); ++ proc1) {
          int const proc =
            interleave_communications
            ? (proc1 + dist::size() - dist::rank()) % dist::size()
            : proc1;
        
          for (size_t type = 0; type < typebufs.size(); type++) {
            // skip unused datatype buffers
            if (not typebufs[type].in_use) continue;
          
            int const datatypesize = typebufs[type].datatypesize;
            procbufdesc const & procbuf = typebufs[type].procbufs[proc];
          
            int const fillstate = procbuf.sendbuf - procbuf.sendbufbase;
            assert (fillstate == (int)procbuf.sendbufsize * datatypesize);
          
            if (procbuf.sendbufsize > 0) {
              int const tag =
                vary_tags
                ? (proc + dist::size() * (dist::rank() + dist::size() * type)) % 32768
                : type;
              if (use_mpi_send) {
                // use MPI_Send
                static Timer timer ("commstate_send");
                timer.start ();
                MPI_Send (procbuf.sendbufbase, procbuf.sendbufsize,
                          typebufs[type].mpi_datatype, proc, tag,
                          dist::comm());
                srequests[dist::size()*type + proc] = MPI_REQUEST_NULL;
                timer.stop (procbuf.sendbufsize * datatypesize);
              } else if (use_mpi_ssend) {
                // use MPI_Ssend
                static Timer timer ("commstate_ssend");
                timer.start ();
                MPI_Ssend (procbuf.sendbufbase, procbuf.sendbufsize,
                           typebufs[type].mpi_datatype, proc, tag,
                           dist::comm());
                srequests[dist::size()*type + proc] = MPI_REQUEST_NULL;
                timer.stop (procbuf.sendbufsize * datatypesize);
              } else {
                // use MPI_Isend
                static Timer timer ("commstate_isend");
                timer.start ();
                MPI_Isend (procbuf.sendbufbase, procbuf.sendbufsize,
                           typebufs[type].mpi_datatype, proc, tag,
                           dist::comm(), &srequests[dist::size()*type + proc]);
                timer.stop (procbuf.sendbufsize * datatypesize);
              }
            }
          
          } // for type
        
        } // for proc
      }

      // Now fall through to the next state in which the recv buffers
      // are emptied as soon as data has arrived.
      thestate = state_empty_recv_buffers;

    case state_empty_recv_buffers:
      // Finish (at least one of) the posted communications
      if (not AllPostedCommunicationsFinished ()) {
        // No state change if there are still outstanding communications;
        // do another comm_state loop iteration.
      } else {
        // Everything is done so release the collective communication buffers.
        for (size_t type = 0; type < typebufs.size(); type++) {
          for (size_t proc = 0; proc < typebufs[type].procbufs.size(); proc++) {
            delete[] typebufs[type].procbufs[proc].sendbufbase;
            delete[] typebufs[type].procbufs[proc].recvbufbase;
          }
        }
        thestate = state_done;
      }
      break;

    default:
      assert (0 && "invalid state");
  }
  total.stop (0);
}


bool comm_state::done ()
{
  return thestate == state_done;
}


comm_state::~comm_state ()
{
  DECLARE_CCTK_PARAMETERS;

  assert (thestate == state_done or
          thestate == (use_collective_communication_buffers ?
                       state_get_buffer_sizes : state_post));
  assert (requests.empty());
}


// wait for completion of posted collective buffer sends/receives
//
// Depending on the parameter CarpetLib::use_waitall, this function will wait
// for all (true) or at least one (false) of the posted receive operations
// to finish.
//
// It returns true if all posted communications have been completed.
bool comm_state::AllPostedCommunicationsFinished ()
{
  DECLARE_CCTK_PARAMETERS;
 
  // check if all outstanding receives have been completed already
  if (num_posted_recvs == num_completed_recvs) {
    // finalize the outstanding sends in one go
    if (reduce_mpi_waitall) {
      size_t nreqs = 0;
      for (size_t i=0; i<srequests.size(); ++i) {
        if (srequests.AT(i) != MPI_REQUEST_NULL) {
          ++nreqs;
        }
      }
      vector<MPI_Request> reqs(nreqs);
      nreqs = 0;
      for (size_t i=0; i<srequests.size(); ++i) {
        if (srequests.AT(i) != MPI_REQUEST_NULL) {
          reqs.AT(nreqs) = srequests.AT(i);
          ++nreqs;
        }
      }
      assert (nreqs == reqs.size());
      static Timer timer ("commstate_waitall_final");
      timer.start ();
      MPI_Waitall (reqs.size(), &reqs.front(), MPI_STATUSES_IGNORE);
      timer.stop (0);
    } else {
      static Timer timer ("commstate_waitall_final");
      timer.start ();
      MPI_Waitall (srequests.size(), &srequests.front(), MPI_STATUSES_IGNORE);
      timer.stop (0);
    }

    return true;
  }

  // reset completion flag for all receive buffers
  recvbuffers_ready.assign (recvbuffers_ready.size(), false);

  if (use_waitall) {
    // mark all posted recveive buffers as ready
    for (size_t i = 0; i < recvbuffers_ready.size(); i++) {
      recvbuffers_ready.AT(i) = rrequests.AT(i) != MPI_REQUEST_NULL;
    }

    // wait for completion of all posted receive operations
    if (reduce_mpi_waitall) {
      size_t nreqs = 0;
      for (size_t i=0; i<rrequests.size(); ++i) {
        if (rrequests.AT(i) != MPI_REQUEST_NULL) {
          ++nreqs;
        }
      }
      vector<MPI_Request> reqs(nreqs);
      nreqs = 0;
      for (size_t i=0; i<rrequests.size(); ++i) {
        if (rrequests.AT(i) != MPI_REQUEST_NULL) {
          reqs.AT(nreqs) = rrequests.AT(i);
          ++nreqs;
        }
      }
      assert (nreqs == reqs.size());
      static Timer timer ("commstate_waitall");
      timer.start ();
      MPI_Waitall (reqs.size(), &reqs.front(), MPI_STATUSES_IGNORE);
      timer.stop (0);
    } else {
      static Timer timer ("commstate_waitall");
      timer.start ();
      MPI_Waitall (rrequests.size(), &rrequests.front(), MPI_STATUSES_IGNORE);
      timer.stop (0);
    }
    num_completed_recvs = num_posted_recvs;
  } else {
    int num_completed_recvs_ = 0;
    vector<int> completed_recvs(rrequests.size(), -1);

    // wait for completion of at least one posted receive operation
    static Timer timer ("commstate_waitsome");
    timer.start ();
    MPI_Waitsome (rrequests.size(), &rrequests.front(), &num_completed_recvs_,
                  &completed_recvs.front(), MPI_STATUSES_IGNORE);
    timer.stop (0);
    assert (0 < num_completed_recvs_);
    num_completed_recvs += num_completed_recvs_;

    // mark the recveive buffers of completed communications as ready
    for (int i = 0; i < num_completed_recvs_; i++) {
      assert (rrequests.AT(completed_recvs.AT(i)) == MPI_REQUEST_NULL);
      recvbuffers_ready.AT(completed_recvs.AT(i)) = true;
    }
  }

  return (false);
}


template<typename T>
comm_state::commbuf<T>::commbuf (ibbox const & box)
{
  data.resize (prod (box.shape() / box.stride()));
}

template<typename T>
comm_state::commbuf<T>::~commbuf ()
{
}

template<typename T>
void const *
comm_state::commbuf<T>::pointer ()
  const
{
  return &data.front();
}

template<typename T>
void *
comm_state::commbuf<T>::pointer ()
{
  return &data.front();
}

template<typename T>
int
comm_state::commbuf<T>::size ()
  const
{
  return data.size();
}

template<typename T>
MPI_Datatype
comm_state::commbuf<T>::datatype ()
  const
{
  T dummy;
  return dist::datatype (dummy);
}



#define INSTANTIATE(T)                          \
  template class comm_state::commbuf<T>;

#include "instantiate"

#undef INSTANTIATE