aboutsummaryrefslogtreecommitdiff
path: root/Carpet/CarpetSlab/src/GetHyperslab.cc
diff options
context:
space:
mode:
Diffstat (limited to 'Carpet/CarpetSlab/src/GetHyperslab.cc')
-rw-r--r--Carpet/CarpetSlab/src/GetHyperslab.cc376
1 files changed, 376 insertions, 0 deletions
diff --git a/Carpet/CarpetSlab/src/GetHyperslab.cc b/Carpet/CarpetSlab/src/GetHyperslab.cc
new file mode 100644
index 000000000..a74c20414
--- /dev/null
+++ b/Carpet/CarpetSlab/src/GetHyperslab.cc
@@ -0,0 +1,376 @@
+// $Header$
+
+#include <cassert>
+#include <cstdlib>
+#include <cstring>
+
+#include <vector>
+
+#include "cctk.h"
+
+#include "bbox.hh"
+#include "bboxset.hh"
+#include "dh.hh"
+#include "gdata.hh"
+#include "ggf.hh"
+#include "gh.hh"
+#include "vect.hh"
+
+#include "carpet.hh"
+
+#include "slab.hh"
+#include "GetHyperslab.hh"
+
+
+
+extern "C" {
+ static const char* rcsid = "$Header$";
+ CCTK_FILEVERSION(Carpet_CarpetSlab_GetHyperslab_cc);
+}
+
+
+
+namespace CarpetSlab {
+
+ using namespace Carpet;
+
+
+
+ void *
+ GetSlab (const cGH* const cgh,
+ const int dest_proc,
+ const int n,
+ const int ti,
+ const int hdim,
+ const int origin[/*vdim*/],
+ const int dirs[/*hdim*/],
+ const int stride[/*hdim*/],
+ const int length[/*hdim*/])
+ {
+ // Check Cactus grid hierarchy
+ assert (cgh);
+
+ // Check destination processor
+ assert (dest_proc>=-1 && dest_proc<CCTK_nProcs(cgh));
+
+ // Check variable index
+ assert (n>=0 && n<CCTK_NumVars());
+
+ // Get info about variable
+ const int group = CCTK_GroupIndexFromVarI(n);
+ assert (group>=0);
+ const int n0 = CCTK_FirstVarIndexI(group);
+ assert (n0>=0);
+ const int var = n - n0;
+ assert (var>=0);
+
+ // Get info about group
+ cGroup gp;
+ CCTK_GroupData (group, &gp);
+ assert (gp.dim<=dim);
+ assert (CCTK_QueryGroupStorageI(cgh, group));
+ const int typesize = CCTK_VarTypeSize(gp.vartype);
+ assert (typesize>0);
+
+ if (gp.grouptype==CCTK_GF && reflevel==-1) {
+ CCTK_WARN (0, "It is not possible to use hyperslabbing for a grid function in global mode (use singlemap mode instead)");
+ }
+ const int rl = gp.grouptype==CCTK_GF ? reflevel : 0;
+
+ if (gp.grouptype==CCTK_GF && Carpet::map==-1) {
+ CCTK_WARN (0, "It is not possible to use hyperslabbing for a grid function in level mode (use singlemap mode instead)");
+ }
+ const int m = gp.grouptype==CCTK_GF ? Carpet::map : 0;
+
+ // Check dimension
+ assert (hdim>=0 && hdim<=gp.dim);
+
+ // Check timelevel
+ const int num_tl = gp.numtimelevels;
+ assert (ti>=0 && ti<num_tl);
+ const int tl = -ti;
+
+ // Check origin
+// for (int d=0; d<dim; ++d) {
+// assert (origin[d]>=0 && origin[d]<=sizes[d]);
+// }
+
+ // Check directions
+ for (int dd=0; dd<hdim; ++dd) {
+ assert (dirs[dd]>=1 && dirs[dd]<=dim);
+ }
+
+ // Check stride
+ for (int dd=0; dd<hdim; ++dd) {
+ assert (stride[dd]>0);
+ }
+
+ // Check length
+ for (int dd=0; dd<hdim; ++dd) {
+ assert (length[dd]>=0);
+ }
+
+ // Check extent
+// for (int dd=0; dd<hdim; ++dd) {
+// assert (origin[dirs[dd]-1] + length[dd] <= sizes[dirs[dd]]);
+// }
+
+ // Get insider information about variable
+ const gh<dim>* myhh;
+ const dh<dim>* mydd;
+ const ggf<dim>* myff;
+ assert (group < (int)arrdata.size());
+ myhh = arrdata.at(group).at(m).hh;
+ assert (myhh);
+ mydd = arrdata.at(group).at(m).dd;
+ assert (mydd);
+ assert (var < (int)arrdata.at(group).at(m).data.size());
+ myff = arrdata.at(group).at(m).data.at(var);
+ assert (myff);
+
+ // Detemine collecting processor
+ const int collect_proc = dest_proc<0 ? 0 : dest_proc;
+
+ // Determine own rank
+ const int rank = CCTK_MyProc(cgh);
+
+ // Calculate global size
+ int totalsize = 1;
+ for (int dd=0; dd<hdim; ++dd) {
+ totalsize *= length[dd];
+ }
+
+ // Allocate memory
+ void* hdata = 0;
+ if (dest_proc==-1 || rank==dest_proc) {
+ assert (0);
+ hdata = malloc(totalsize * typesize);
+ assert (hdata);
+ memset (hdata, 0, totalsize * typesize);
+ }
+
+ // Get sample data
+ const gdata<dim>* mydata;
+ mydata = (*myff)(tl, rl, 0, 0);
+
+ // Stride of data in memory
+ const vect<int,dim> str = mydata->extent().stride();
+
+ // Stride of collected data
+ vect<int,dim> hstr = str;
+ for (int dd=0; dd<hdim; ++dd) {
+ hstr[dirs[dd]-1] *= stride[dd];
+ }
+
+ // Lower bound of collected data
+ vect<int,dim> hlb(0);
+ for (int d=0; d<gp.dim; ++d) {
+ hlb[d] = origin[d] * str[d];
+ }
+
+ // Upper bound of collected data
+ vect<int,dim> hub = hlb;
+ for (int dd=0; dd<hdim; ++dd) {
+ hub[dirs[dd]-1] += (length[dd]-1) * hstr[dirs[dd]-1];
+ }
+
+ // Calculate extent to collect
+ const bbox<int,dim> hextent (hlb, hub, hstr);
+ assert (hextent.size() == totalsize);
+
+ // Create collector data object
+ void* myhdata = rank==collect_proc ? hdata : 0;
+ gdata<dim>* const alldata = mydata->make_typed(-1);
+ alldata->allocate (hextent, collect_proc, myhdata);
+
+ // Done with the temporary stuff
+ mydata = 0;
+
+ for (comm_state<dim> state; !state.done(); state.step()) {
+
+ // Loop over all components, copying data from them
+ BEGIN_LOCAL_COMPONENT_LOOP (cgh, gp.grouptype) {
+
+ // Get data object
+ mydata = (*myff)(tl, rl, component, mglevel);
+
+ // Calculate overlapping extents
+ const bboxset<int,dim> myextents
+ = ((mydd->boxes.at(rl).at(component).at(mglevel).sync_not
+ | mydd->boxes.at(rl).at(component).at(mglevel).interior)
+ & hextent);
+
+ // Loop over overlapping extents
+ for (bboxset<int,dim>::const_iterator ext_iter = myextents.begin();
+ ext_iter != myextents.end();
+ ++ext_iter) {
+
+ // Copy data
+ alldata->copy_from (state, mydata, *ext_iter);
+
+ }
+
+ } END_LOCAL_COMPONENT_LOOP;
+
+ } // for step
+
+ // Copy result to all processors
+ if (dest_proc == -1) {
+ vector<gdata<dim>*> tmpdata(CCTK_nProcs(cgh));
+ vector<comm_state<dim> > state;
+
+ for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
+ if (proc != collect_proc) {
+ void* myhdata = rank==proc ? hdata : 0;
+ tmpdata.at(proc) = mydata->make_typed(-1);
+ tmpdata.at(proc)->allocate (alldata->extent(), proc, myhdata);
+ tmpdata.at(proc)->copy_from (state.at(proc), alldata, alldata->extent());
+ }
+ }
+
+ for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
+ if (proc != collect_proc) {
+ tmpdata.at(proc)->copy_from (state.at(proc), alldata, alldata->extent());
+ }
+ }
+
+ for (int proc=0; proc<CCTK_nProcs(cgh); ++proc) {
+ if (proc != collect_proc) {
+ tmpdata.at(proc)->copy_from (state.at(proc), alldata, alldata->extent());
+ delete tmpdata.at(proc);
+ }
+ }
+
+ } // Copy result
+
+ delete alldata;
+
+ // Success
+ return hdata;
+ }
+
+
+
+ int
+ Hyperslab_GetHyperslab (const cGH* const GH,
+ const int target_proc,
+ const int vindex,
+ const int vtimelvl,
+ const int hdim,
+ const int global_startpoint [/*vdim*/],
+ const int directions [/*vdim*/],
+ const int lengths [/*hdim*/],
+ const int downsample_ [/*hdim*/],
+ void** const hdata,
+ int hsize [/*hdim*/])
+ {
+ const int vdim = CCTK_GroupDimFromVarI(vindex);
+ assert (vdim>=1 && vdim<=dim);
+
+ // Check some arguments
+ assert (hdim>=0 && hdim<=dim);
+
+ // Check output arguments
+ assert (hdata);
+ assert (hsize);
+
+ // Calculate more convenient representation of the direction
+ int dirs[dim]; // should really be dirs[hdim]
+ // The following if statement is written according to the
+ // definition of "dir".
+ if (hdim==1) {
+ // 1-dimensional hyperslab
+ int mydir = 0;
+ for (int d=0; d<vdim; ++d) {
+ if (directions[d]!=0) {
+ mydir = d+1;
+ break;
+ }
+ }
+ assert (mydir>0);
+ for (int d=0; d<vdim; ++d) {
+ if (d == mydir-1) {
+ assert (directions[d]!=0);
+ } else {
+ assert (directions[d]==0);
+ }
+ }
+ dirs[0] = mydir;
+ } else if (hdim==vdim) {
+ // vdim-dimensional hyperslab
+ for (int d=0; d<vdim; ++d) {
+ dirs[d] = d+1;
+ }
+ } else if (hdim==2) {
+ // 2-dimensional hyperslab with vdim==3
+ assert (vdim==3);
+ int mydir = 0;
+ for (int d=0; d<vdim; ++d) {
+ if (directions[d]==0) {
+ mydir = d+1;
+ break;
+ }
+ }
+ assert (mydir>0);
+ for (int d=0; d<vdim; ++d) {
+ if (d == mydir-1) {
+ assert (directions[d]==0);
+ } else {
+ assert (directions[d]!=0);
+ }
+ }
+ int dd=0;
+ for (int d=0; d<vdim; ++d) {
+ if (d != mydir-1) {
+ dirs[dd] = d+1;
+ ++dd;
+ }
+ }
+ assert (dd==hdim);
+ } else {
+ assert (0);
+ }
+ // Fill remaining length
+ for (int d=vdim; d<dim; ++d) {
+ dirs[d] = d+1;
+ }
+
+ // Calculate lengths
+ vector<int> downsample(hdim);
+ for (int dd=0; dd<hdim; ++dd) {
+ if (lengths[dd]<0) {
+ int gsh[dim];
+ int ierr = CCTK_GroupgshVI(GH, dim, gsh, vindex);
+ assert (!ierr);
+ const int totlen = gsh[dirs[dd]-1];
+ assert (totlen>=0);
+ // Partial argument check
+ assert (global_startpoint[dirs[dd]-1]>=0);
+ assert (global_startpoint[dirs[dd]-1]<=totlen);
+ downsample[dd] = downsample_ ? downsample_[dd] : 1;
+ assert (downsample[dd]>0);
+ hsize[dd] = (totlen - global_startpoint[dirs[dd]-1]) / downsample[dd];
+ } else {
+ hsize[dd] = lengths[dd];
+ }
+ assert (hsize[dd]>=0);
+ }
+
+ // Get the slab
+ *hdata = GetSlab (GH,
+ target_proc,
+ vindex,
+ vtimelvl,
+ hdim,
+ global_startpoint,
+ dirs,
+ &downsample[0],
+ hsize);
+
+ // Return with success
+ return 1;
+ }
+
+
+
+} // namespace CarpetSlab