aboutsummaryrefslogtreecommitdiff
path: root/src/vectors-8-VSX.h
blob: 35af574f630dc70d3243d8722ac6a67676e1ba92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Vectorise using IBM's Altivec VSX (Power)

// Use the type vector double directly, without introducing a wrapper class
// Use macros instead of inline functions

// See <http://pic.dhe.ibm.com/infocenter/comphelp/v111v131/index.jsp>



#include <altivec.h>



#define vec8_architecture "VSX"

// Vector type corresponding to CCTK_REAL
#define CCTK_REAL8_VEC vector double

// Number of vector elements in a CCTK_REAL_VEC
#define CCTK_REAL8_VEC_SIZE 2

// Integer and boolean types corresponding to this real type
#define CCTK_INTEGER8     long long
#define CCTK_BOOLEAN8     long long
#define CCTK_INTEGER8_VEC vector long long
#define CCTK_BOOLEAN8_VEC vector bool long long



// Create vectors, extract vector elements

#define vec8_set1(a)  (vec_splats(a))
#define vec8_set(a,b)                           \
  ({                                            \
    CCTK_REAL8_VEC x;                           \
    x[0]=(a);                                   \
    x[1]=(b);                                   \
    x;                                          \
  })

#define vec8_elt0(x) ((x)[0])
#define vec8_elt1(x) ((x)[1])
#define vec8_elt(x,d) ((x)[d])



// Load and store vectors

// Load a vector from memory (aligned and unaligned); this loads from
// a reference to a scalar
#define vec8_load(p)  (*(CCTK_REAL8_VEC const*)&(p))
#define vec8_loadu(p) (*(CCTK_REAL8_VEC const*)&(p))

// Load a vector from memory that may or may not be aligned, as
// decided by the offset and the vector size
#define vec8_loadu_maybe(off,p)             (vec8_loadu(p))
#define vec8_loadu_maybe3(off1,off2,off3,p) (vec8_loadu(p))

// Store a vector to memory (aligned and non-temporal); this stores to
// a reference to a scalar
#define vec8_store(p,x)  (*(CCTK_REAL8_VEC*)&(p)=(x))
#define vec8_storeu(p,x) (*(CCTK_REAL8_VEC*)&(p)=(x))
// stvxl instruction doesn't exist for double precision
#define vec8_store_nta(p,x) vec8_store(p,x)

// Store a partial vector (aligned and non-temporal)
#define vec8_store_partial_prepare(i,imin,imax)                 \
  bool const v8stp_lo = (i)>=(imin);                            \
  bool const v8stp_hi = (i)+CCTK_REAL8_VEC_SIZE-1<(imax)
#define vec8_store_nta_partial(p_,x_)                           \
  ({                                                            \
    CCTK_REAL8& p__=(p_);                                       \
    CCTK_REAL8& p=p__;                                          \
    CCTK_REAL8_VEC const x__=(x_);                              \
    CCTK_REAL8_VEC const x=x__;                                 \
    if (CCTK_BUILTIN_EXPECT(v8stp_lo and v8stp_hi, true)) {     \
      vec8_store(p,x);                                          \
    } else if (v8stp_lo) {                                      \
      (&p)[0]=vec8_elt0(x);                                     \
    } else if (v8stp_hi) {                                      \
      (&p)[1]=vec8_elt1(x);                                     \
    }                                                           \
  })

// Store a lower or higher partial vector (aligned and non-temporal);
// the non-temporal hint is probably ignored
#define vec8_store_nta_partial_lo(p,x,n) ((&(p))[0]=(x)[0])
#define vec8_store_nta_partial_hi(p,x,n) ((&(p))[1]=(x)[1])
#define vec8_store_nta_partial_mid(p,x,nlo,nhi) (assert(0))



// Functions and operators

// Operators
#define k8neg(x) (-(x))

#define k8add(x,y) ((x)+(y))
#define k8sub(x,y) ((x)-(y))
#define k8mul(x,y) ((x)*(y))
#define k8div(x,y) ((x)/(y))

// Fused multiply-add, defined as [+-]x*y[+-]z
#define k8madd(x,y,z)  (vec_madd(x,y,z))
#define k8msub(x,y,z)  (vec_msub(x,y,z))
#define k8nmadd(x,y,z) (vec_nmadd(x,y,z))
#define k8nmsub(x,y,z) (vec_nmsub(x,y,z))

// Cheap functions
#define k8copysign(x,y) (vec_cpsgn(y,x))
#define k8fabs(x)       (vec_abs(x))
#define k8fmax(x,y)     (vec_max(x,y))
#define k8fmin(x,y)     (vec_min(x,y))
#define k8fnabs(x)      (vec_nabs(x))
#define k8sgn(x_)                                                       \
  ({                                                                    \
    CCTK_REAL8_VEC x__=(x_);                                            \
    CCTK_REAL8_VEC x=x__;                                               \
    CCTK_BOOLEAN8_VEC iszero = k8cmpeq(x,vec8_set1((CCTK_REAL8)0.0));   \
    CCTK_REAL8_VEC signedone = k8copysign(vec8_set1((CCTK_REAL8)1.0),x); \
    k8ifthen(iszero, vec8_set1((CCTK_REAL8)0.0), signedone);            \
  })
#define k8sqrt(x)       (vec_sqrt(x))

// Expensive functions
#define K8REPL(f,x_)                            \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    vec8_set(f(vec8_elt0(x)),                   \
             f(vec8_elt1(x)));                  \
  })
#define K8REPL2S(f,x_,a_)                       \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8     const a__=(a_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8     const a=a__;                 \
    vec8_set(f(vec8_elt0(x),a),                 \
             f(vec8_elt1(x),a));                \
  })
#define K8REPL2(f,x_,y_)                        \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const y__=(y_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8_VEC const y=y__;                 \
    vec8_set(f(vec8_elt0(x),vec8_elt0(y)),      \
             f(vec8_elt1(x),vec8_elt1(y)));     \
  })

#define k8acos(x)    K8REPL(acos,x)
#define k8acosh(x)   K8REPL(acosh,x)
#define k8asin(x)    K8REPL(asin,x)
#define k8asinh(x)   K8REPL(asinh,x)
#define k8atan(x)    K8REPL(atan,x)
#define k8atan2(x,y) K8REPL2(atan2,x,y)
#define k8atanh(x)   K8REPL(atanh,x)
#define k8cos(x)     K8REPL(cos,x)
#define k8cosh(x)    K8REPL(cosh,x)
#define k8exp(x)     K8REPL(exp,x)
#define k8log(x)     K8REPL(log,x)
#define k8pow(x,a)   K8REPL2S(pow,x,a)
#define k8sin(x)     K8REPL(sin,x)
#define k8sinh(x)    K8REPL(sinh,x)
#define k8tan(x)     K8REPL(tan,x)
#define k8tanh(x)    K8REPL(tanh,x)

// canonical true is -1LL, canonical false is 0LL
// truth values are interpreted bit-wise
#define k8lfalse        ({ CCTK_BOOLEAN8_VEC dummy; vec_xor(dummy,dummy); })
#define k8ltrue         (k8lnot(k8lfalse))
#define k8lnot(x_)                              \
  ({                                            \
    CCTK_BOOLEAN8_VEC x__=(x_);                 \
    CCTK_BOOLEAN8_VEC x=x__;                    \
    vec_nor(x,x);                               \
  })
#define k8land(x,y)     (vec_and(x,y))
#define k8lor(x,y)      (vec_or(x,y))
#define k8lxor(x,y)     (vec_xor(x,y))
#define k8ifthen(x,y,z) (vec_sel(z,y,x))

#define k8cmpeq(x,y) (vec_cmpeq(x,y))
#define k8cmpne(x,y) (k8lnot(vec_cmpeq(x,y)))
#define k8cmpgt(x,y) (vec_cmpgt(x,y))
#define k8cmpge(x,y) (vec_cmpge(x,y))
#define k8cmplt(x,y) (vec_cmplt(x,y))
#define k8cmple(x,y) (vec_cmple(x,y))