aboutsummaryrefslogtreecommitdiff
path: root/src/vectors-8-DoubleHummer.h
blob: bc1c6e39ccc82f4a8e81afdf4ae64a562e6661df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// -*-C++-*-
// Vectorise using IBM's Blue Gene/P Double Hummer (Power)

// Use the type double _Complex directly, without introducing a wrapper class
// Use macros instead of inline functions

// See <http://publib.boulder.ibm.com/infocenter/compbgpl/v9v111/index.jsp>



#include <assert.h>

#ifdef __cplusplus
#  include <builtins.h>
#endif



#define vec8_architecture "Double Hummer"

// Vector type corresponding to CCTK_REAL
#define CCTK_REAL8_VEC double _Complex

// Number of vector elements in a CCTK_REAL_VEC
#define CCTK_REAL8_VEC_SIZE 2

// Integer and boolean types corresponding to this real type
//#define CCTK_INTEGER8     CCTK_REAL8
#define CCTK_BOOLEAN8     CCTK_REAL8
//#define CCTK_INTEGER8_VEC CCTK_REAL8_VEC
#define CCTK_BOOLEAN8_VEC CCTK_REAL8_VEC



union k8const_t {
  double             f[2];
  unsigned long long i[2];
  CCTK_REAL8_VEC     vf;
};



// Create vectors, extract vector elements

#define vec8_set1(a)  (__cmplx(a,a))
#define vec8_set(a,b) (__cmplx(a,b))

#define vec8_elt0(x) (__creal(x))
#define vec8_elt1(x) (__cimag(x))
#define vec8_elt(x_,d)                          \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8 a;                               \
    switch (d) {                                \
    case 0: a=vec8_elt0(x); break;              \
    case 1: a=vec8_elt1(x); break;              \
    }                                           \
    a;                                          \
  })



// Load and store vectors

// Load a vector from memory (aligned and unaligned); this loads from
// a reference to a scalar
#define vec8_load(p)  (__lfpd((CCTK_REAL8 *)&(p)))
#if ! VECTORISE_ALWAYS_USE_ALIGNED_LOADS
#  define vec8_load_off1(p_)                    \
  ({                                            \
    CCTK_REAL8 const& p__=(p_);                 \
    CCTK_REAL8 const& p=p__;                    \
    vec8_set((&p)[0],(&p)[1]);                  \
  })
#else
#if 0
#  define vec8_load_off1(p_)                                    \
  ({                                                            \
    CCTK_REAL8 const& p__=(p_);                                 \
    CCTK_REAL8 const& p=p__;                                    \
    CCTK_REAL8_VEC const lo = __lfxd((CCTK_REAL8 *)(&p-1));     \
    CCTK_REAL8_VEC const hi = __lfxd((CCTK_REAL8 *)(&p+1));     \
    __fpsel(vec8_set(-1.0,+1.0),lo,hi);                         \
  })
#endif
#  define vec8_load_off1(p_)                            \
  ({                                                    \
    CCTK_REAL8 const& p__=(p_);                         \
    CCTK_REAL8 const& p=p__;                            \
    CCTK_REAL8_VEC const lo = vec8_load((&p)[-1]);      \
    CCTK_REAL8_VEC const hi = vec8_load((&p)[+1]);      \
    __fxmr(__fpsel(vec8_set(+1.0,-1.0),lo,hi));         \
  })
#endif
#define vec8_loadu(p_)                          \
  ({                                            \
    CCTK_REAL8 const& p__=(p_);                 \
    CCTK_REAL8 const& p=p__;                    \
    int const off = (ptrdiff_t)&p & 0xf;        \
    off==0 ? vec8_load(p) : vec8_load_off1(p);  \
  })

// Load a vector from memory that may or may not be aligned, as
// decided by the offset and the vector size
#if VECTORISE_ALWAYS_USE_UNALIGNED_LOADS
// Implementation: Always use unaligned load
#  define vec8_loadu_maybe(off,p)             vec8_loadu(p)
#  define vec8_loadu_maybe3(off1,off2,off3,p) vec8_loadu(p)
#else
#  define vec8_loadu_maybe(off,p_)              \
  ({                                            \
    CCTK_REAL8 const& p__=(p_);                 \
    CCTK_REAL8 const& p=p__;                    \
    (off) % CCTK_REAL8_VEC_SIZE == 0 ?          \
      vec8_load(p) :                            \
      vec8_load_off1(p);                        \
  })
#  if VECTORISE_ALIGNED_ARRAYS
// Assume all array x sizes are multiples of the vector size
#    define vec8_loadu_maybe3(off1,off2,off3,p) vec8_loadu_maybe(off1,p)
#  else
#    define vec8_loadu_maybe3(off1,off2,off3,p_)        \
  ({                                                    \
    CCTK_REAL8 const& p__=(p_);                         \
    CCTK_REAL8 const& p=p__;                            \
    ((off2) % CCTK_REAL8_VEC_SIZE != 0 or               \
     (off3) % CCTK_REAL8_VEC_SIZE != 0) ?               \
      vec8_loadu(p) :                                   \
      vec8_loadu_maybe(off1,p);                         \
  })
#  endif
#endif

// Store a vector to memory (aligned and non-temporal); this stores to
// a reference to a scalar
#define vec8_store(p,x)     (__stfpd(&(p),x))
#define vec8_storeu(p,x)    (__stfpd(&(p),x)) // this may not work
#define vec8_store_nta(p,x) (__stfpd(&(p),x)) // this doesn't avoid the cache

// Store a partial vector (aligned and non-temporal)
#define vec8_store_partial_prepare(i,imin,imax)                 \
  bool const v8stp_lo = (i)>=(imin);                            \
  bool const v8stp_hi = (i)+CCTK_REAL_VEC_SIZE-1<(imax)
#define vec8_store_nta_partial(p_,x_)                           \
  ({                                                            \
    CCTK_REAL8& p__=(p_);                                       \
    CCTK_REAL8& p=p__;                                          \
    CCTK_REAL8_VEC const x__=(x_);                              \
    CCTK_REAL8_VEC const x=x__;                                 \
    if (CCTK_BUILTIN_EXPECT(v8stp_lo and v8stp_hi, true)) {     \
      vec8_store(p,x);                                          \
    } else if (v8stp_lo) {                                      \
      (&p)[0]=vec8_elt0(x);                                     \
    } else if (v8stp_hi) {                                      \
      (&p)[1]=vec8_elt1(x);                                     \
    }                                                           \
  })

// Store a lower or higher partial vector (aligned and non-temporal);
// the non-temporal hint is probably ignored
#define vec8_store_nta_partial_lo(p,x,n) ((&(p))[0]=vec8_elt0(x))
#define vec8_store_nta_partial_hi(p,x,n) ((&(p))[1]=vec8_elt1(x))
#define vec8_store_nta_partial_mid(p,x,nlo,nhi) assert(0)



// Functions and operators

// Operators
#define k8neg(x) (__fpneg(x))

#define k8add(x,y) (__fpadd(x,y))
#define k8sub(x,y) (__fpsub(x,y))
#define k8mul(x,y) (__fpmul(x,y))
// Estimate for reciprocal
#define k8inv_init(x) (__fpre(x))
// One Newton iteration for reciprocal
#define k8inv_iter(x_,r_)                               \
  ({                                                    \
    CCTK_REAL8_VEC const x__=(x_);                      \
    CCTK_REAL8_VEC const r__=(r_);                      \
    CCTK_REAL8_VEC const x=x__;                         \
    CCTK_REAL8_VEC const r=r__;                         \
    /* r + r * (1 - x*r) */                             \
    k8madd(r, k8nmsub(x, r, vec8_set1(1.0)), r);        \
  })
// Reciprocal: First estimate, then apply two Newton iterations
#define k8inv(x_)                               \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8_VEC const r0 = k8inv_init(x);    \
    CCTK_REAL8_VEC const r1 = k8inv_iter(x,r0); \
    CCTK_REAL8_VEC const r2 = k8inv_iter(x,r1); \
    r2;                                         \
  })
#define k8div(x,y) (__fpmul(x,k8inv(y)))

// Fused multiply-add, defined as [+-]x*y[+-]z
#define k8madd(x,y,z)  (__fpmadd(z,x,y))
#define k8msub(x,y,z)  (__fpmsub(z,x,y))
#define k8nmadd(x,y,z) (__fpnmadd(z,x,y))
#define k8nmsub(x,y,z) (__fpnmsub(z,x,y))

// Cheap functions
// TODO: handle -0 correctly
#define k8copysign(x,y) (k8ifthen(y,k8fabs(x),k8fnabs(x)))
#define k8fabs(x)       (__fpabs(x))
#define k8fmax(x_,y_)                           \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const y__=(y_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8_VEC const y=y__;                 \
    __fpsel(k8sub(y,x),x,y);                    \
  })
#define k8fmin(x_,y_)                           \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const y__=(y_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8_VEC const y=y__;                 \
    __fpsel(k8sub(x,y),x,y);                    \
  })
#define k8fnabs(x) (__fpnabs(x))
static const k8const_t k8zero = {{  0.0,  0.0, }};
static const k8const_t k8one  = {{ +1.0, +1.0, }};
static const k8const_t k8mone = {{ -1.0, -1.0, }};
#define k8sgn(x_)                                                       \
  ({                                                                    \
    CCTK_REAL_VEC x__=(x_);                                             \
    CCTK_REAL_VEC x=x__;                                                \
    CCTK_REAL_VEC iszero = k8fnabs(x);                                  \
    CCTK_REAL_VEC signedone = k8ifthen(x, k8one.vf, k8mone.vf);         \
    k8ifthen(iszero, k8zero.vf, signedone);                             \
  })
// Estimate for reciprocal square root
#define k8rsqrt_init(x) (__fprsqrte(x))
// One Newton iteration for reciprocal square root
#define k8rsqrt_iter(x_,rs_)                                    \
  ({                                                            \
    CCTK_REAL8_VEC const x__=(x_);                              \
    CCTK_REAL8_VEC const rs__=(rs_);                            \
    CCTK_REAL8_VEC const x=x__;                                 \
    CCTK_REAL8_VEC const rs=rs__;                               \
    /* rs (3/2 - x/2 rs^2) */                                   \
    k8mul(rs, k8msub(vec8_set1(1.5), x2, k8mul(rs, rs)));       \
  })
// Reciprocal square root: First estimate, then apply two Newton iterations
#define k8rsqrt(x_)                                     \
  ({                                                    \
    CCTK_REAL8_VEC const x__=(x_);                      \
    CCTK_REAL8_VEC const x=x__;                         \
    CCTK_REAL8_VEC const rs0 = k8rsqrt_init(x);         \
    CCTK_REAL8_VEC const x2  = k8mul(vec8_set1(0.5),x); \
    CCTK_REAL8_VEC const rs1 = k8rsqrt_iter(x2,rs0);    \
    CCTK_REAL8_VEC const rs2 = k8rsqrt_iter(x2,rs1);    \
    rs2;                                                \
  })
#define k8sqrt(x_)                              \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    k8mul(x, k8rsqrt(x));                       \
  })

// Expensive functions
#define K8REPL(f,x_)                            \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    vec8_set(f(vec8_elt0(x)),                   \
             f(vec8_elt1(x)));                  \
  })
#define K8REPL2S(f,x_,a_)                       \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8     const a__=(a_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8     const a=a__;                 \
    vec8_set(f(vec8_elt0(x),a),                 \
             f(vec8_elt1(x),a));                \
  })
#define K8REPL2(f,x_,y_)                        \
  ({                                            \
    CCTK_REAL8_VEC const x__=(x_);              \
    CCTK_REAL8_VEC const y__=(y_);              \
    CCTK_REAL8_VEC const x=x__;                 \
    CCTK_REAL8_VEC const y=y__;                 \
    vec8_set(f(vec8_elt0(x),vec8_elt0(y)),      \
             f(vec8_elt1(x),vec8_elt1(y)));     \
  })

#define k8acos(x)    K8REPL(acos,x)
#define k8acosh(x)   K8REPL(acosh,x)
#define k8asin(x)    K8REPL(asin,x)
#define k8asinh(x)   K8REPL(asinh,x)
#define k8atan(x)    K8REPL(atan,x)
#define k8atan2(x,y) K8REPL2(atan2,x,y)
#define k8atanh(x)   K8REPL(atanh,x)
#define k8cos(x)     K8REPL(cos,x)
#define k8cosh(x)    K8REPL(cosh,x)
#define k8exp(x)     K8REPL(exp,x)
#define k8log(x)     K8REPL(log,x)
#define k8pow(x,a)   K8REPL2S(pow,x,a)
#define k8sin(x)     K8REPL(sin,x)
#define k8sinh(x)    K8REPL(sinh,x)
#define k8tan(x)     K8REPL(tan,x)
#define k8tanh(x)    K8REPL(tanh,x)

// canonical true is +1.0, canonical false is -1.0
// >=0 is true, -0 is true (?), nan is false (?)
static const k8const_t k8lfalse_ = {{ -1.0, -1.0, }};
static const k8const_t k8ltrue_  = {{ +1.0, +1.0, }};
#define k8lfalse        (k8lfalse_.vf)
#define k8ltrue         (k8ltrue_.vf)
#define k8lnot(x)       (k8ifthen(x,k8lfalse,k8ltrue))
#define k8land(x,y)     (k8ifthen(x,y,k8lfalse))
#define k8lor(x,y)      (k8ifthen(x,k8ltrue,y))
#define k8lxor(x,y)     (k8ifthen(x,k8lnot(y),y))
#define k8ifthen(x,y,z) (__fpsel(x,z,y))

#define k8cmpeq(x,y) (__fpnabs((x)-(y)))
#define k8cmpne(x,y) (k8lnot(__fpnabs((x)-(y))))
#define k8cmpgt(x,y) (k8lnot(k8cmple(x,y)))
#define k8cmpge(x,y) ((x)-(y))
#define k8cmplt(x,y) (k8lnot(k8cmpge(x,y)))
#define k8cmple(x,y) ((y)-(x))