summaryrefslogtreecommitdiff
path: root/src/trumpet.c
blob: 7b65822547aa29b3f693080895d81c88ef9c34c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_spline.h>
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#define MAX(x,y) (x) > (y) ? (x) : (y)
#define SQR(x) ((x)*(x))

#define MASS 1
/*
 * the constant C from e.g. 0908.1063v4
 */
#define TRUMPET_CONST (3*sqrt(3)*SQR(MASS)/4)
/*
 * small number to avoid r=0 singularities
 */
#define EPS 1E-08
/*
 * isotropic/coordinate radius
 */
#define ISO_R(index) (sqrt(SQR(x[index]) + SQR(y[index]) + SQR(z[index]) + EPS))

static inline double r_areal_to_isotropic(double r, double m)
{
    double par   = sqrt(4*r*r + 4*m*r + 3*m*m);
    double term1 = (2*r + m + par)/4;
    double term2 = (4 + 3*M_SQRT2)*(2*r - 3*m)/(8*r + 6*m + 3*M_SQRT2*par);
    return term1*pow(term2, M_SQRT1_2);
}

/**
 * get maximal isotropic r
 */
static CCTK_REAL get_max_r(CCTK_INT dim)
{
    CCTK_REAL phys_min[dim], phys_max[dim], ext_min[dim], ext_max[dim], int_min[dim], int_max[dim], step[dim];
    CCTK_REAL max = 0;

    GetDomainSpecification(dim, phys_min, phys_max, int_min, int_max, ext_min, ext_max, step);

    for (int i = 0; i < dim; i++) {
        max = MAX(max, abs(phys_min[i]));
        max = MAX(max, abs(phys_max[i]));
    }
    return sqrt(dim)*2*max;
}

static void get_r_tables(double **pr_iso, double **pr_areal, CCTK_INT *size, CCTK_INT dim)
{
#define STEP 0.0001
    double *r_iso, *r_areal, max = get_max_r(dim);
    int count = max*2/STEP, i = 0;

    r_iso   = malloc(count*sizeof(*r_iso));
    r_areal = malloc(count*sizeof(*r_areal));

    for (i = 0;;i++) {
        if (i >= count) {
            count *= 2;
            r_iso = realloc(r_iso, count*sizeof(*r_iso));
            r_areal = realloc(r_areal, count*sizeof(*r_areal));
        }

        r_areal[i] = i*STEP + 1.5;
        r_iso[i]   = r_areal_to_isotropic(r_areal[i], 1);
        if (r_iso[i] > max)
            break;
    }
    *pr_iso   = r_iso;
    *pr_areal = r_areal;
    *size     = i;
}

void trumpet_data(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

    memset(gxy, 0, sizeof(*gxy)*CCTK_GFINDEX3D(cctkGH, cctk_lsh[0]-1, cctk_lsh[1]-1, cctk_lsh[2]-1));
    memset(gxz, 0, sizeof(*gxy)*CCTK_GFINDEX3D(cctkGH, cctk_lsh[0]-1, cctk_lsh[1]-1, cctk_lsh[2]-1));
    memset(gyz, 0, sizeof(*gxy)*CCTK_GFINDEX3D(cctkGH, cctk_lsh[0]-1, cctk_lsh[1]-1, cctk_lsh[2]-1));

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL r = ISO_R(index);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);
                CCTK_REAL psi2 = R/r, psi4 = psi2*psi2;
                CCTK_REAL k_fact = TRUMPET_CONST/(r*r*r*r*R);

                gxx[index] = gyy[index] = gzz[index] = psi4;

                kxx[index] = -k_fact*(3*SQR(x[index]) - SQR(r));
                kyy[index] = -k_fact*(3*SQR(y[index]) - SQR(r));
                kzz[index] = -k_fact*(3*SQR(z[index]) - SQR(r));

                kxy[index] = -k_fact*3*x[index]*y[index];
                kxz[index] = -k_fact*3*x[index]*z[index];
                kyz[index] = -k_fact*3*y[index]*z[index];
            }
}

void trumpet_lapse(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL r = sqrt(SQR(x[index]) + SQR(y[index]) + SQR(z[index]) + EPS);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);

                alp[index] = sqrt(1 - 2*MASS/R + TRUMPET_CONST*TRUMPET_CONST/(R*R*R*R));
            }
}

void trumpet_shift(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL r = sqrt(SQR(x[index]) + SQR(y[index]) + SQR(z[index]) + EPS);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);

                betax[index] = TRUMPET_CONST*x[index]/(R*R*R);
                betay[index] = TRUMPET_CONST*y[index]/(R*R*R);
                betaz[index] = TRUMPET_CONST*z[index]/(R*R*R);
            }
}

            }
}