summaryrefslogtreecommitdiff
path: root/src/trumpet.c
blob: 4421cf62ce911fd8c5a7161021797ff149188272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_spline.h>
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "mdefs.h"

#define MAX(x,y) (x) > (y) ? (x) : (y)
#define SQR(x) ((x)*(x))

#ifndef M_SQRT2
#define M_SQRT2 1.4142135623730951
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.7071067811865476
#endif

#define MASS 1
/*
 * the constant C from e.g. 0908.1063v4
 */
#define TRUMPET_CONST (3*sqrt(3)*SQR(MASS)/4)
/*
 * small number to avoid r=0 singularities
 */
#define EPS 1E-08
/*
 * isotropic/coordinate radius
 */
#define ISO_R(x, y, z) (sqrt(SQR(x) + SQR(y) + SQR(z) + EPS))

#define TRUMPET_ALPHA(R) (sqrt(1 - 2*MASS/R + SQR(TRUMPET_CONST)/SQR(SQR(R))))

static inline double r_areal_to_isotropic(double r, double m)
{
    double par   = sqrt(4*SQR(r) + 4*m*r + 3*SQR(m));
    double term1 = (2*r + m + par)/4;
    double term2 = (4 + 3*M_SQRT2)*(2*r - 3*m)/(8*r + 6*m + 3*M_SQRT2*par);
    return term1*pow(term2, M_SQRT1_2);
}

/**
 * get maximal isotropic r
 */
static CCTK_REAL get_max_r(CCTK_INT dim)
{
    CCTK_REAL phys_min[dim], phys_max[dim], ext_min[dim], ext_max[dim], int_min[dim], int_max[dim], step[dim];
    CCTK_REAL max = 0;

    GetDomainSpecification(dim, phys_min, phys_max, int_min, int_max, ext_min, ext_max, step);

    for (int i = 0; i < dim; i++) {
        max = MAX(max, abs(ext_min[i]));
        max = MAX(max, abs(ext_max[i]));
    }
    return sqrt(dim)*2*max;
}

static void get_r_tables(double **pr_iso, double **pr_areal, CCTK_INT *size, CCTK_INT dim)
{
#define STEP 0.0001
    double *r_iso, *r_areal, max = get_max_r(dim);
    int count = max*2/STEP, i = 0;

    r_iso   = malloc(count*sizeof(*r_iso));
    r_areal = malloc(count*sizeof(*r_areal));

    for (i = 0;;i++) {
        if (i >= count) {
            count *= 2;
            r_iso = realloc(r_iso, count*sizeof(*r_iso));
            r_areal = realloc(r_areal, count*sizeof(*r_areal));
        }

        r_areal[i] = i*STEP + 1.5;
        r_iso[i]   = r_areal_to_isotropic(r_areal[i], 1);
        if (r_iso[i] > max)
            break;
    }
    *pr_iso   = r_iso;
    *pr_areal = r_areal;
    *size     = i;
}

/* those equations come from trumpet.nb */
static long double sqrt_factor(long double R, long double r, long double x, long double alpha, long double beta)
{
    long double R2 = SQR(R);
    return sqrtl((R2*(R + alpha*beta*r) - beta*TRUMPET_CONST*x)*(R2*(R - alpha*beta*r) - beta*TRUMPET_CONST*x));
}

static inline CCTK_REAL K_11(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    long double b2 = SQR(beta);
    long double r2 = SQR(r);
    long double R2 = SQR(R);

    long double n1 = TRUMPET_CONST*(1.0 - 3*SQR(x/r))*(beta*x*TRUMPET_CONST/R - R2)/r2;
    long double n2 = b2*beta*M*(-Power(TRUMPET_CONST,2)/(R2*R2) + Power(alpha,2))*x;
    long double n3 = b2*TRUMPET_CONST*M*(1.0 + 2*SQR(x/r))/R;
    long double n4 = beta*x*(SQR(R/r)*(-2*M + (-1 + alpha)*alpha*R));

    long double den = (b2 - 1)*sqrt_factor(R, r, x, alpha, beta);

    return (n1 + n2 + n3 + n4)/den;
}

static inline CCTK_REAL K_22(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    long double r2 = SQR(r);
    long double R2 = SQR(R);

    long double n1 = TRUMPET_CONST*(R2 - beta*TRUMPET_CONST*(x/R))*(1.0 - 3*SQR(y/r))/r2;
    long double n2 = alpha*(alpha - 1)*beta*SQR(R/r)*R*x;

    long double sq = sqrt_factor(R, r, x, alpha, beta);

    return (n1 + n2)/sq;
}

static inline CCTK_REAL K_33(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    return K_22(x, z, y, R, r, beta, M, alpha);
}

static inline CCTK_REAL K_12(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    long double b2 = SQR(beta);
    long double r2 = SQR(r);
    long double R2 = SQR(R);

    long double n1 = TRUMPET_CONST*(b2*M/R + 3*SQR(R/r))*x - 3*beta*SQR(TRUMPET_CONST)*SQR(x/r)/R;
    long double n2 = beta*SQR(R/r)*(-M + (-1 + alpha)*alpha*R);
    long double den = -sqrt_factor(R, r, x, alpha, beta)*sqrtl(1 - b2);     // really minus?

    return y*(n1/r2 + n2)/den;
}

static inline CCTK_REAL K_13(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    return K_12(x, z, y, R, r, beta, M, alpha);
}

static inline CCTK_REAL K_23(CCTK_REAL x, CCTK_REAL y, CCTK_REAL z,
                             CCTK_REAL R, CCTK_REAL r,
                             CCTK_REAL beta, CCTK_REAL M,
                             CCTK_REAL alpha)
{
    long double r2 = SQR(r);
    long double R2 = SQR(R);

    long double num = -3*TRUMPET_CONST*(R2 - beta*TRUMPET_CONST*x/R)*(y/r)*(z/r);
    long double den = r2*sqrt_factor(R, r, x, alpha, beta);

    return num/den;
}

void trumpet_data(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    double gamma = 1.0/sqrt(1.0 - SQR(boost_velocity));

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

    memset(gyz, 0, sizeof(*gxy)*(CCTK_GFINDEX3D(cctkGH, cctk_lsh[0]-1, cctk_lsh[1]-1, cctk_lsh[2]-1) + 1));

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL xx = gamma*x[index], yy = y[index], zz = z[index];
                CCTK_REAL r = ISO_R(xx, yy, zz);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);
                CCTK_REAL alpha = TRUMPET_ALPHA(R);

                long double r2 = SQR(r);
                long double R2 = SQR(R);
                long double b2 = SQR(boost_velocity);

                kxx[index] = K_11(xx, yy, zz, R, r, boost_velocity, MASS, alpha);
                kyy[index] = K_22(xx, yy, zz, R, r, boost_velocity, MASS, alpha);
                kzz[index] = K_33(xx, yy, zz, R, r, boost_velocity, MASS, alpha);
                kxy[index] = K_12(xx, yy, zz, R, r, boost_velocity, MASS, alpha);
                kxz[index] = K_13(xx, yy, zz, R, r, boost_velocity, MASS, alpha);
                kyz[index] = K_23(xx, yy, zz, R, r, boost_velocity, MASS, alpha);

                gxx[index] = (-SQR(R/r) + b2*(-SQR(TRUMPET_CONST/R2) + Power(alpha,2)) + 2*boost_velocity*TRUMPET_CONST*xx/(R*r2)) / (b2 - 1);
                gyy[index] = SQR(R/r);
                gzz[index] = SQR(R/r);
                gxy[index] = -((boost_velocity*TRUMPET_CONST*yy)/(Sqrt(1 - b2)*r2*R));
                gxz[index] = -((boost_velocity*TRUMPET_CONST*zz)/(Sqrt(1 - b2)*r2*R));
            }
    free(r_iso);
    free(r_areal);
    gsl_interp_accel_free(acc);
    gsl_spline_free(spline);
}

void trumpet_lapse(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    double gamma = 1.0/sqrt(1.0 - SQR(boost_velocity));

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL xx = gamma*x[index], yy = y[index], zz = z[index];
                CCTK_REAL r = ISO_R(xx, yy, zz);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);
                CCTK_REAL alpha = TRUMPET_ALPHA(R);

                long double r2 = SQR(r);
                long double R2 = SQR(R);
                long double b2 = SQR(boost_velocity);

                alp[index] = alpha*R2*R*sqrt((b2 - 1) / (Power(alpha,2)*b2*r2*R2*R2 - Power(R2*R - boost_velocity*TRUMPET_CONST*xx,2)));
            }
    free(r_iso);
    free(r_areal);
    gsl_interp_accel_free(acc);
    gsl_spline_free(spline);
}

void trumpet_shift(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    double gamma = 1.0/sqrt(1.0 - SQR(boost_velocity));

    gsl_interp_accel *acc;
    gsl_spline    *spline;

    double *r_iso, *r_areal;
    CCTK_INT size;

    get_r_tables(&r_iso, &r_areal, &size, cctk_dim);

    spline = gsl_spline_alloc(gsl_interp_cspline, size);
    gsl_spline_init(spline, r_iso, r_areal, size);
    acc = gsl_interp_accel_alloc();

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int   index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                CCTK_REAL xx = gamma*x[index], yy = y[index], zz = z[index];
                CCTK_REAL r = ISO_R(xx, yy, zz);
                CCTK_REAL R = gsl_spline_eval(spline, r, acc);
                CCTK_REAL alpha = TRUMPET_ALPHA(R);

                long double r2 = SQR(r);
                long double R2 = SQR(R);
                long double b2 = SQR(boost_velocity);
                long double a2 = SQR(alpha);

                betax[index] = -((a2*boost_velocity*r2*R2*R2 + TRUMPET_CONST*Power(R,3)*xx + b2*TRUMPET_CONST*Power(R,3)*xx - boost_velocity*(Power(R,6) + Power(TRUMPET_CONST,2)*Power(xx,2)))/
     (a2*b2*r2*R2*R2 - Power(Power(R,3) - boost_velocity*TRUMPET_CONST*xx,2)));
                betay[index] = (Sqrt(1 - b2)*TRUMPET_CONST*(-Power(R,3) + boost_velocity*TRUMPET_CONST*xx)*yy)/(a2*b2*r2*R2*R2 - Power(Power(R,3) - boost_velocity*TRUMPET_CONST*xx,2));
                betaz[index] = (Sqrt(1 - b2)*TRUMPET_CONST*(-Power(R,3) + boost_velocity*TRUMPET_CONST*xx)*zz)/(a2*b2*r2*R2*R2 - Power(Power(R,3) - boost_velocity*TRUMPET_CONST*xx,2));

            }
    free(r_iso);
    free(r_areal);
    gsl_interp_accel_free(acc);
    gsl_spline_free(spline);
}