summaryrefslogtreecommitdiff
path: root/src/teukolsky.c
blob: 90d055936797b624ccc71543f49def1d7de5e385 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <teukolsky_data.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#define SQR(x) ((x) * (x))
#define SIGN(x) ((x) > 0 ? 1.0 : -1.0)

/*
 * small number to avoid r=0 singularities
 */
#define EPS 1E-08

void teukolsky_data(CCTK_ARGUMENTS)
{
    static TDContext *prev_td;

    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    TDContext *td;
    double *r_val, *theta_val, *psi_val, *krr_val, *kpp_val, *krt_val;
    int ret;

    int64_t grid_size = CCTK_GFINDEX3D(cctkGH,
                                       cctk_lsh[0] - 1,
                                       cctk_lsh[1] - 1,
                                       cctk_lsh[2] - 1) + 1;

    /* on the first run, solve the constraints */
    if (!prev_td) {
        const char *omp_threads = getenv("OMP_NUM_THREADS");

        td = td_context_alloc();
        if (!td)
            CCTK_WARN(0, "Memory allocation failed\n");

        td->amplitude    = amplitude;
        td->nb_coeffs[0] = basis_order_0;
        td->nb_coeffs[1] = basis_order_1;
        td->basis_scale_factor[0] = scale_factor;
        td->basis_scale_factor[1] = scale_factor;
        td->solution_branch = solution_branch;
        td->max_iter        = max_iter;
        td->family          = family;

        if (omp_threads)
            td->nb_threads = strtol(omp_threads, NULL, 0);
        if (td->nb_threads <= 0)
            td->nb_threads = 1;


        ret = td_solve(td, NULL);
        if (ret < 0)
            CCTK_WARN(0, "Error solving the Teukolsky wave initial data equations\n");

        prev_td = td;
    } else
        td = prev_td;

    memset(gxz, 0, sizeof(*gxz) * grid_size);
    memset(gxy, 0, sizeof(*gxy) * grid_size);
    memset(gyz, 0, sizeof(*gyz) * grid_size);

    memset(kxy, 0, sizeof(*kxy) * grid_size);
    memset(kyz, 0, sizeof(*kyz) * grid_size);

    /* construct the coordinate vectors to be passed to the library */
    r_val     = malloc(sizeof(*r_val)     * (cctk_lsh[2] * cctk_lsh[0] + 1));
    theta_val = malloc(sizeof(*theta_val) * (cctk_lsh[2] * cctk_lsh[0] + 1));
    psi_val   = malloc(sizeof(*psi_val)   * (cctk_lsh[2] * cctk_lsh[0] + 1));
    krr_val   = malloc(sizeof(*krr_val)   * (cctk_lsh[2] * cctk_lsh[0] + 1));
    kpp_val   = malloc(sizeof(*kpp_val)   * (cctk_lsh[2] * cctk_lsh[0] + 1));
    krt_val   = malloc(sizeof(*krt_val)   * (cctk_lsh[2] * cctk_lsh[0] + 1));
    for (int j = 0; j < cctk_lsh[2]; j++)
        for (int i = 0; i < cctk_lsh[0]; i++) {
            double xx = x[CCTK_GFINDEX3D(cctkGH, i, 0, j)];
            double zz = z[CCTK_GFINDEX3D(cctkGH, i, 0, j)];
            double r     = sqrt(SQR(xx) + SQR(zz));
            double theta = (fabs(r) > 1e-15) ? acos(zz / r) : 0.0;

            r_val[j * cctk_lsh[0] + i]     = r;
            theta_val[j * cctk_lsh[0] + i] = theta;
        }
    r_val[cctk_lsh[2] * cctk_lsh[0]] = 0.0;
    theta_val[cctk_lsh[2] * cctk_lsh[0]] = M_PI / 2;

    ret  = td_eval_psi(td, cctk_lsh[2] * cctk_lsh[0] + 1, r_val, theta_val,
                       (const unsigned int [2]){ 0, 0},
                       psi_val);
    ret |= td_eval_krr(td, cctk_lsh[2] * cctk_lsh[0] + 1, r_val, theta_val,
                       (const unsigned int [2]){ 0, 0},
                       krr_val);
    ret |= td_eval_kpp(td, cctk_lsh[2] * cctk_lsh[0] + 1, r_val, theta_val,
                       (const unsigned int [2]){ 0, 0},
                       kpp_val);
    ret |= td_eval_krt(td, cctk_lsh[2] * cctk_lsh[0] + 1, r_val, theta_val,
                       (const unsigned int [2]){ 0, 0},
                       krt_val);
    if (ret)
        CCTK_WARN(0, "Error evaluating the variables\n");

    for (int j = 0; j < cctkGH->cctk_lsh[2]; j++) {
        for (int i = 0; i < cctk_lsh[0]; i++) {
            int    idx_dst = CCTK_GFINDEX3D(cctkGH, i, 0, j);
            int    idx_src = j * cctk_lsh[0] + i;
            double xx = x[idx_dst], zz = z[idx_dst];
            double     r = r_val[idx_src];
            double theta = theta_val[idx_src];
            double s2t    = sin(2.0 * theta);

            double psi = psi_val[idx_src];
            double psi4 = SQR(SQR(psi));

            double krr = krr_val[idx_src];
            double kpp = kpp_val[idx_src];
            double ktt = -(krr + kpp);
            double krt = krt_val[idx_src];

            gxx[idx_dst] = psi4;
            gyy[idx_dst] = psi4;
            gzz[idx_dst] = psi4;

            kyy[idx_dst] = psi4 * kpp;

            if (fabs(r) > 1e-15) {
                kxx[idx_dst] = psi4 * (SQR(xx / r)      * krr + SQR(zz / r)      * ktt + 2.0 * zz * fabs(xx) / (r * SQR(r)) * krt);
                kzz[idx_dst] = psi4 * (SQR(zz / r)      * krr + SQR(xx / r)      * ktt - 2.0 * zz * fabs(xx) / (r * SQR(r)) * krt);
                kxz[idx_dst] = psi4 * (xx * zz / SQR(r) * krr - xx * zz / SQR(r) * ktt + (-xx * fabs(xx) + SIGN(xx) * SQR(zz)) * krt / (r * SQR(r)));
            } else {
                kxx[idx_dst] = psi4 * krr_val[cctk_lsh[0] * cctk_lsh[2]];
                kzz[idx_dst] = psi4 * krr;
                kxz[idx_dst] = 0.0;
            }
        }
    }

    if (!strcmp(initial_lapse, "teukolsky_max")) {
        ret = td_eval_lapse(td, cctk_lsh[2] * cctk_lsh[0], r_val, theta_val,
                            (const unsigned int [2]){ 0, 0}, alp);
        if (ret)
            CCTK_WARN(0, "Error evaluating the lapse\n");
    }

    free(r_val);
    free(theta_val);
    free(psi_val);
    free(krr_val);
    free(kpp_val);
    free(krt_val);
}