aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: d84d6591d407065db96c3666c3563c881bc2aeb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%
%  Thorn documentation in the latex file doc/documentation.tex
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include
%  pages about variables, parameters and scheduling parsed from the
%  relevant thorn CCL files.
%
%  This template contains guidelines which help to assure that your
%  documentation will be correctly added to ThornGuides. More
%  information is available in the Cactus UsersGuide.
%
%  Guidelines:
%   - Do not change anything before the line
%       % START CACTUS THORNGUIDE",
%     except for filling in the title, author, date, etc. fields.
%        - Each of these fields should only be on ONE line.
%        - Author names should be separated with a \\ or a comma.
%   - You can define your own macros, but they must appear after
%     the START CACTUS THORNGUIDE line, and must not redefine standard
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations',
%     'references', and 'image' names should conform to the following
%     convention:
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphicx package.
%     More specifically, with the "\includegraphics" command.  Do
%     not specify any graphic file extensions in your .tex file. This
%     will allow us to create a PDF version of the ThornGuide
%     via pdflatex.
%   - References should be included with the latex "\bibitem" command.
%   - Use \begin{abstract}...\end{abstract} instead of \abstract{...}
%   - Do not use \appendix, instead include any appendices you need as
%     standard sections.
%   - For the benefit of our Perl scripts, and for future extensions,
%     please use simple latex.
%
% *======================================================================*
%
% Example of including a graphic image:
%    \begin{figure}[ht]
% 	\begin{center}
%    	   \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
% 	\end{center}
% 	\caption{Illustration of this and that}
% 	\label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999),
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================*

% If you are using CVS use this line to give version information


\documentclass{article}


% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/latex/cactus}
\usepackage{latexsym}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsmath}


\begin{document}

% The author of the documentation
\author{I.~Hawke,\\
 F.~Loeffler \textless loeffler@sissa.it \textgreater } 
%A.~Nagar \textless alessandro.nagar@polito.it\textgreater}

% The title of the document (not necessarily the name of the Thorn)
\title{TOVSolver}

% the date your document was last changed, if your document is in CVS,
% please use:
%    \date{$ $Date: 2009-09-17 15:39:33 -0500 (Thu, 17 Sep 2009) $ $}

\date{\today}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here
%   \def\mydef etc

\begin{abstract}
  This thorn solves the Tolman-Oppenheimer-Volkov equations of hydrostatic equilibrium
  for a spherically symmetric static star. 
\end{abstract}


%---------------------
\section{Introduction}
\label{sec:intro}
%---------------------

The Tolman-Oppenheimer-Volkoff solution is a static perfect fluid
``star''. It is frequently used as a test of relativistic hydro
codes. Here it is intended for use without evolving the matter
terms. This provides a compact strong field solution which is static
but does not contain singularities.


%------------------
\section{Equations}
\label{sec:eqn}
%------------------

The equations for a TOV star~\cite{Tolman39,OppVol39,mtw} are usually
derived in Schwarzschild coordinates. In these coordinates, the metric can
be brought into the form
\begin{equation}
ds^2 = -e^{2\phi}dt^2 + \left(1-\dfrac{2m}{r}\right)^{-1}dr^2 + r^2 d\Omega^2 \ .
\end{equation}


This thorn is based on the notes of Thomas Baumgarte~\cite{Baumgarte-file} that 
have been partially included in this documentation. However the notation for the
fluid quantities follows~\cite{Font00a}. 
Here we are assuming that the stress energy tensor is given by
\begin{equation}
  \label{eq:Tmunu}
  T^{\mu\nu} = (\mu + P)u^{\mu}u^{\nu} + Pg^{\mu\nu},
\end{equation}
where $\mu$ is the total energy, $P$ the pressure, $u^{\mu}$ the fluid
four velocity, $\rho$ the rest-mass density, $\epsilon$ the specific
internal energy, and
\begin{eqnarray}
  \label{eq:fluidquantities}
  \mu & = & \rho (1 + \epsilon), \\
  P & = & (\Gamma - 1)\rho\epsilon, \\
  P & = & K \rho^{\Gamma}.
\end{eqnarray}
This enforces a polytropic equation of state. We note that in Cactus
the units are $c = G = M_{\odot} = 1$.

The equations to give the initial data are solved (as usual) in the
Schwarzschild-like coordinates with the areal radius labelled $r$.
The equations of the relativistic hydrostatic equilibrium are
\begin{eqnarray}
  \label{eq:TOViso}
  \frac{d P}{d r} & = & -(\mu + P) \frac{m + 4\pi r^3 P}{r(r - 2m)}, \\
%
  \frac{d m}{d r} & = & 4 \pi r^2 \mu, \\
%
  \frac{d \phi}{d r} & = & \frac{m + 4\pi r^3 P}{r(r -
    2m)} \ . \\
\end{eqnarray}
Here $m$ is the gravitational mass inside the sphere radius $r$, and
$\phi$ the logarithm of the lapse. Once the integration is done for the 
interior of the star we match to the exterior (see below). In the exterior 
we have
\begin{align}
  \label{eq:TOVexterior}
     P & =  {\tt TOV\_atmosphere}, \\
     m & =  M, \\
  \phi & = \dfrac{1}{2} \log(1-2M / r).
\end{align}

In order to impose initial data in cartesian coordinates, we want to transform
this solution to isotropic coordinates, in which the metric takes the form
\begin{equation}
\label{eq:metr_iso}
ds^2 = -e^{2\phi}dt^2+e^{2\Lambda}\left(d\bar{r}^2+\bar{r}^2d\Omega^2\right) \ .
\end{equation}
Here $\bar{r}$ denotes the isotropic radius. Matching the two metrics, one
obviously finds
\begin{align}
r^2                                    &= e^{2\Lambda}\bar{r}^2 \ , \\
\left(1-\dfrac{2m}{r}\right)^{-1} dr^2 &= e^{2\Lambda}d\bar{r}^2 \ .
\end{align}
As a result, we have an additional differential equation to solve in order
to have $\bar{r}(r)$, that is
\begin{equation}
\label{eq:rbar}
\frac{d (\log(\bar{r} / r))}{\partial r} =  \frac{r^{1/2} - (r-2m)^{1/2}}{r(r-2m)^{1/2}} \ .
\end{equation}
Given such a solution, the missing metric potential is simply given by
\begin{equation}
e^{\Lambda} = \dfrac{r}{\bar{r}} \ .
\end{equation}
In the following section we concentrate on solving Eq.~(\ref{eq:rbar}) in the
exterior and in the interior of the star.

Then, given these one-dimensional data we interpolate to get data on 
the three-dimensional Cactus grid; that is, we interpolate on the three dimensional 
{\tt r} given by the {\tt x, y, z} variables the physical hydro and spacetime
quantities that are function of the isotropic radius $\bar{r}$ computed above. 
Only linear interpolation is used. This avoids problems at the surface of the 
star, and does not cause problems if the number of points in the one dimensional 
array is sufficient ($1\times 10^5$ is the default, which should be sufficient for 
medium-sized grids).

%--------------------
\subsection{Exterior}
\label{sbsc:exterior}
%--------------------

In the exterior of the star, $r>R$, the mass $M\equiv m(R)$ is constant, and 
Eq.~(\ref{eq:rbar}) can be solved analytically up to a constant of integration. 
Fixing this constant such that $r$ and $\bar{r}$ agree at infinity, we find
\begin{equation}
\bar{r} = \dfrac{1}{2}\left(\sqrt{r^2-2Mr}+r -M\right) \ ,
\end{equation}
or, solving for $r$ [cfr. Exercise 31.7 of MTW~\cite{mtw}]
\begin{equation}
r=\bar{r}\left(1+\dfrac{M}{2\bar{r}}\right)^2 \ .
\end{equation}
The metric potential as a function of $\bar{r}$ is obviously
\begin{equation}
e^{2\Lambda} = \left(1+\dfrac{M}{2\bar{r}}\right)^2 \ .
\end{equation}

%--------------------
\subsection{Interior}
\label{sbsc:interior}
%--------------------

In the interior, Eq,~(\ref{eq:rbar}) can not be integrated analytically, because
$m$ is now a function of $r$. Instead, we have to integrate
\begin{equation}
\int_0^{\bar{r}} \dfrac{d\bar{r}}{\bar{r}} = \int_0^r\left(1-\dfrac{2m}{r}\right)^{-1/2}\dfrac{dr}{r} \ .
\end{equation}
The left hand side can be integrated analytically, and has a singular point at
$\bar{r}=0$. The right hand side cannot be integrated analytically, but will also
be singular at $r=0$, which poses problems when trying to integrate the equation
numerically. We therefore rewrite the right hand side by adding and subracting
a term $1/r$, which yields
\begin{equation}
\int_0^r\dfrac{1}{r(1-2m/r)^{1/2}}dr = \int_0^r\dfrac{1-(1-2m/r)^{1/2}}{r(1-2m/r)^{1/2}}dr+\int_0^r\dfrac{dr}{r} \ .
\end{equation}
Since $m\sim r^3$ close to the origin, the first term on the right hand side is now
regular and the second one can be integrated analytically. As a result, we find
\begin{equation}
\int_0^{\bar{r}}d\ln\bar{r}-\int_0^rd\ln r=\int_0^r\dfrac{1-(1-2m/r)^{1/2}}{r(1-2m/r)^{1/2}}dr \ .
\end{equation}
Replacing the lower limits ($r=\bar{r}=0$) temporarily with $r_0$ and $\bar{r}_0$, we can integrate
the right hand side and find
\begin{equation}
\ln\left(\dfrac{\bar{r}}{r}\right)-\ln\left(\dfrac{\bar{r}_0}{r_0}\right)=\int_0^r\dfrac{1-(1-2m/r)^{1/2}}{r(1-2m/r)^{1/2}}dr \ ,
\end{equation}
or
\begin{equation}
\bar{r} = C r \exp\left[\int_0^r\dfrac{1-(1-2m/r)^{1/2}}{r(1-2m/r)^{1/2}}dr\right] \ .
\end{equation}
Here the constant of integration $C$ is related to the ratio $\bar{r}_0/r_0$ evaluated at
the origin (which is perfectly regular). It can be chosen such that the interior solution
matches the exterior solution at the surface of the star. This requirement implies
\begin{equation}
C = \dfrac{1}{2R}\left(\sqrt{R^2-2MR}+R-M\right)\exp\left[\int_0^R\dfrac{1-(1-2m/r)^{1/2}}{r(1-2m/r)^{1/2}}dr\right] \ .
\end{equation}
In this respect, let us recall how we do initial data for the system of 
equations at $r=0$.  Given a value of the central density $\rho_c$ (in
Cactus units) we pose $P_0 = K\rho_c^{\Gamma}$, $m_0=0$, $\phi_0=0$ and 
$\bar{r}_0 = {\tt TOV\_Tiny}$, $r_0 = {\tt TOV\_Tiny}$. The {\tt TOV\_Tiny} 
number is hardwired into the code to avoid divide by zero errors; it is $10^{-20}$. 
Also the default parameters will give the TOV star used for the long term evolutions
in~\cite{Font02a}. That is, a nonrotating $N=1$ ($\gamma=1+1/N=2$) polytropic star 
with gravitational mass $M=1.4M_{\odot}$, circumferential radius $R=14.15$km, central 
rest-mass density $\rho_c=1.28 \times 10^{-3}$ and $K=100$.


%--------------------------
\section{Use of this thorn}
\label{sec:use}
%--------------------------

To use this thorn to provide initial data for the {\tt ADMBase}
variables $\alpha$, $\beta$, $g$ and $K$ just activate the thorn and
set {\tt ADMBase:initial\_data = ``TOV''}.

There are two ways of coupling the matter sources to the thorn that
evolves the Einstein equations. One is to use the {\tt CalcTmunu}
interface. This will give the components of the stress energy tensor
\emph{pointwise} across the grid. For an example of this, see thorn
{\tt ADM} in {\tt CactusEinstein}.

To use the {\tt CalcTmunu} interface you should
\begin{itemize}
\item put the lines
\begin{verbatim}
friend: ADMCoupling

USES INCLUDE: CalcTmunu.inc
USES INCLUDE: CalcTmunu_temps.inc
USES INCLUDE: CalcTmunu_rfr.inc
\end{verbatim}
in your {\tt interface.ccl}
\item In any routine requiring the matter terms, put 
  \begin{itemize}
  \item {\tt \#include ``CalcTmunu\_temps.inc''} in the variable
    declarations
  \item declare {\tt CCTK\_REAL}s {\tt Ttt, Ttx, Tty, Ttz, Txx, Txy,
      Txz, Tyy, Tyz, Tzz}.
  \item Inside an {\tt i,j,k} loop put {\tt \#include
      ``CalcTmunu.inc''}. {\bf This must be a Fortran routine} (We
    could probably fix this if requested).
  \end{itemize}
\item You then use the real numbers {\tt Ttt} etc.~as the stress
  energy tensor at a point.
\end{itemize}

As an alternative you can use the grid functions {\tt StressEnergytt,
  StressEnergytx}, etc.~directly to have the stress energy tensor over
the entire grid. To do this you just need the line {\tt friend:
  ADMCoupling} in your {\tt interface.ccl}. Although this seems much
simpler, you will now \emph{only} get the contributions from the {\tt
  TOVSolver} thorn. If you want to use other matter sources, most of
the current thorns ({\tt CosmologicalConstant}, the hydro code, the
scalar field code) all use the {\tt CalcTmunu} interface.

You also have the possibility to use a parameter
{\tt whiskytovsolver::TOV\_Separation} to obtain a spacetime consisting
of one TOV-system for $x>0$ and a second (similar) for $x<0$. This parameter
sets the separation of the centers of two neutron stars, has to be positive
and should be larger than twice the radius of one star.\\
Be aware that the spacetime obtained by this is no physical spacetime and
no solution of Einsteins Equations and therefore an IVP-run has to follow.
This parameter was only introduced for testing purposes of the IVP-Solver
and should only be considered as such. There would be better (and also easy)
ways to obtain initial data for two TOVs than that.





\begin{thebibliography}{10}

\bibitem{Tolman39}
R.~C. Tolman, Phys. Rev. {\bf 55}, 364 (1939).
%
\bibitem{OppVol39}
J.~R. Oppenheimer and G. Volkoff, Physical Review {\bf 55}, 374 (1939).
%
\bibitem{mtw}
C.W.~Misner, K.S.~Thorn and J.A.~Wheeler, Gravitation (Freeman and co. NY, 1973).
%
\bibitem{Baumgarte-file}
T.~W. Baumgarte. There is a copy of his notes in this directory: \\
TOVSolver/doc.
%
\bibitem{Font00a}
J.~A. Font, M. Miller, W. Suen and M. Tobias, Phys. Rev. {\bf D61},
044011 (2000).
%
\bibitem{Font02a}
J.~A. Font, T. Goodale, S. Iyer, M. Miller, L. Rezzolla, E. Seidel,
N. Stergioulas, W. Suen and M. Tobias, Phys. Rev. {\bf D65},
084024 (2002).


\end{thebibliography}

\include{interface}
\include{param}
\include{schedule}

% Do not delete next line
% END CACTUS THORNGUIDE


\end{document}