aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 9efc3ad92624409079a74869853aeed3799c441d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%  $Header$
%
%  Thorn documentation in the latex file doc/documentation.tex
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include
%  pages about variables, parameters and scheduling parsed from the
%  relevant thorn CCL files.
%
%  This template contains guidelines which help to assure that your
%  documentation will be correctly added to ThornGuides. More
%  information is available in the Cactus UsersGuide.
%
%  Guidelines:
%   - Do not change anything before the line
%       % START CACTUS THORNGUIDE",
%     except for filling in the title, author, date, etc. fields.
%        - Each of these fields should only be on ONE line.
%        - Author names should be separated with a \\ or a comma.
%   - You can define your own macros, but they must appear after
%     the START CACTUS THORNGUIDE line, and must not redefine standard
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations',
%     'references', and 'image' names should conform to the following
%     convention:
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphicx package.
%     More specifically, with the "\includegraphics" command.  Do
%     not specify any graphic file extensions in your .tex file. This
%     will allow us to create a PDF version of the ThornGuide
%     via pdflatex.
%   - References should be included with the latex "\bibitem" command.
%   - Use \begin{abstract}...\end{abstract} instead of \abstract{...}
%   - Do not use \appendix, instead include any appendices you need as
%     standard sections.
%   - For the benefit of our Perl scripts, and for future extensions,
%     please use simple latex.
%
% *======================================================================*
%
% Example of including a graphic image:
%    \begin{figure}[ht]
%       \begin{center}
%          \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
%       \end{center}
%       \caption{Illustration of this and that}
%       \label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999),
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================*

% If you are using CVS use this line to give version information
% $Header$

\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/latex/cactus}

\begin{document}

% The author of the documentation
\author{Erik Schnetter \textless schnetter@aei.mpg.de\textgreater}

% The title of the document (not necessarily the name of the Thorn)
\title{SymBase}

% the date your document was last changed, if your document is in CVS,
% please use:
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here
%   \def\mydef etc

% Add an abstract for this thorn's documentation
\begin{abstract}
Thorn SymBase contains a registry for symmetry conditions and for
symmetry faces.
\end{abstract}

% The following sections are suggestive only.
% Remove them or add your own.



\section{Introduction}

Thorn SymBase contains a registry for symmetry conditions and for
symmetry faces.  Other thorns that implement symmetry boundary
conditions register themselves with this thorn and reserve certain
faces of the grid, so that no other boundary condition is applied
there.  Thorns that implement physical boundary conditions should
query this thorn about the set of faces that have symmetry boundary
conditions and should not apply the physical boundary condition there.



\section{Registering Symmetry Conditions}

Each thorn that implements a symmetry boundary condition should
register itself with thorn SymBase.  This has no consequences per se,
but it reservers a symmetry handle for later use.  The API for
registering and querying symmetry names and handles is

\begin{verbatim}
CCTK_INT FUNCTION
    SymmetryRegister (CCTK_STRING IN sym_name)

CCTK_INT FUNCTION
    SymmetryHandleOfName (CCTK_STRING IN sym_name)

CCTK_POINTER_TO_CONST FUNCTION
    SymmetryNameOfHandle (CCTK_INT IN sym_handle)
\end{verbatim}

The routine \texttt{SymmetryRegister} should be called in a routine
that has been scheduled in the schedule group
\texttt{SymmetryRegister}.

\begin{quote}
Note: We have the API in the specification, we have it in the
interface file, in the source code, and in a header file, and I
duplicated it into grdoc headers.  I refuse to write and describe and
cross-check the API a \emph{sixth} time in latex.  At some point, we
have to start using tools for that.  Please read the grdoc headers or
the grdoc-produced html files for a detailed description.
\end{quote}



\section{Registering Symmetries for Faces}

Thorn SymBase keeps two registries.  The first, described in the
previous section, contains the set of symmetry boundary conditions
that exist at all.  The second, described here, describes which face
of the grids have which symmetry condition applied to it, if any.
Each such mapping from grid face to symmetry condition is described by
a symmetry table with the following entries:

\begin{verbatim}
CCTK_INT symmetry_handle[]
CCTK_INT symmetry_zone_width[]
\end{verbatim}

Each of these arrays contains one element per face, numbered in the
same way as the \texttt{cctk\_bbox} array.  The
\texttt{symmetry\_handle} is a symmetry handle as described in the
previous section, and the \texttt{symmetry\_zone\_width} is the width
of the symmetry zone.

Code outside SymBase should not modify these table entries.

There is one such table for the grid hierarchy, which is valid for all
grid functions.  There is additionally one such table for each grid
array group.

The API for registering symmetries for faces is

\begin{verbatim}
CCTK_INT FUNCTION
    SymmetryRegisterGrid
         (CCTK_POINTER IN cctkGH,
          CCTK_INT IN sym_handle,
          CCTK_INT IN ARRAY which_faces,
          CCTK_INT IN ARRAY symmetry_zone_width)

CCTK_INT FUNCTION
    SymmetryRegisterGI
        (CCTK_POINTER IN cctkGH,
         CCTK_INT IN sym_handle,
         CCTK_INT IN ARRAY which_faces,
         CCTK_INT IN ARRAY symmetry_zone_width,
         CCTK_INT IN group_index)

CCTK_INT FUNCTION
    SymmetryRegisterGN
        (CCTK_POINTER IN cctkGH,
         CCTK_INT IN sym_handle,
         CCTK_INT IN ARRAY which_faces,
         CCTK_INT IN ARRAY symmetry_zone_width,
         CCTK_STRING IN group_name)
\end{verbatim}

The first routine registers a symmetry condition for certain faces for
the grid hierarchy, the other two routines register for grid array
groups.  \texttt{sym\_handle} must be a symmetry handle obtained as
described in the previous section.  \texttt{which\_faces} and
\texttt{symmetry\_zone\_width} are arrays with one element per face,
numbered in the same way as the \texttt{cctk\_bbox} array.
\texttt{which\_faces} selects which faces to register, and
\texttt{symmetry\_zone\_width} sets the number of symmetry zones for
these faces.

It is obviously not possible to register multiple symmetry conditions
for the same face.



\section{Querying Symmetries of Faces}

Physical boundary conditions need to know to which faces they should
apply the boundary condition.  They need to query SymBase for the set
of faces that have a symmetry boundary condition, and they must not
apply their physical boundary condition there.  The API is

\begin{verbatim}
CCTK_INT FUNCTION
    SymmetryTableHandleForGrid (CCTK_POINTER_TO_CONST IN cctkGH)

CCTK_INT FUNCTION
    SymmetryTableHandleForGI
        (CCTK_POINTER_TO_CONST IN cctkGH,
         CCTK_INT IN group_index)

CCTK_INT FUNCTION
    SymmetryTableHandleForGN
        (CCTK_POINTER_TO_CONST IN cctkGH,
         CCTK_STRING IN group_name)
\end{verbatim}

These functions return the the handle for the symmetry table for the
grid hierarchy or for the grid array group, respectively.  The table
entry \texttt{symmetry\_handle} contains the symmetry handle for the
symmetry boundary condition, or a negative number if the face has no
symmetry boundary condition associated with it.

The code to find out which boundaries should have a physical boundary
condition applied might look as follows:

\begin{verbatim}
#include "cctk.h"
#include "util_Table.h"

CCTK_INT symtable;
CCTK_INT symbnd[6];
int face;
int ierr;

symtable = SymmetryTableHandleForGrid (cctkGH);
if (symtable<0)
  CCTK_VWarn(0, __LINE__, __FILE__, "Thorn_Name", "symtable is out of bounds");

ierr = Util_TableGetIntArray (symtable, 6, symbnd, "symmetry_handle");
if (ierr!=6)
  CCTK_VWarn(0, __LINE__, __FILE__, "Thorn_Name", "Util_TableGetIntArray returned error");

for (face=0; face<6; ++face) {
  if (cctk_bbox[face] && symbnd[face]<0) {
    /* Apply physical boundary condition here */
  }
}
\end{verbatim}

\hrule

\begin{verbatim}
#include "util_Table.h"

CCTK_INT symtable
CCTK_INT symbnd(6)
integer face
integer ierr

symtable = SymmetryTableHandleForGrid (cctkGH)
if (symtable<0) call CCTK_WARN (0, "internal error")

call Util_TableGetIntArray (ierr, int(symtable), 6, symbnd, "symmetry_handle")
if (ierr/=6) call CCTK_WARN (0, "internal error")

do face=1,6
  if (cctk_bbox(face)/=0 .and. symbnd(face)<0) then
    ! Apply physical boundary condition here
  end if
end do
\end{verbatim}



\section{Symmetry Interpolation}

When the computational domain has symmetries, then it is often very
convenient to be able to interpolate at points that are not present on
the actual computational grid, but can be mapped into the grid through
the symmetries.  Thorn SymBase provides a mechanism by which symmetry
conditions can register routines that handle this mapping when a
global interpolator is called.  Additionally, the driver has to be
aware that it calls thorn SymBase's mapping routine before it actually
interpolates.  The whole mechanism is transparent for the user.

The mechanism by which the grid points are mapped into the domain
works as follows:
\begin{enumerate}
\item The user calls \texttt{CCTK\_InterpGridArrays} with a list of coordinates.
\item The flesh forwards this call to the driver.
\item The driver calls SymBase's aliased function,
  \texttt{SymmetryInterpolate}, passing along all arguments.
\item SymBase sets a flag for all boundaries that have a symmetry
  condition associated with it, and then calls
  \texttt{SymmetryInterpolateFaces}, passing along all arguments.
  This is the beginning of a chain of recursive calls.
\item \texttt{SymmetryInterpolateFaces} checks whether any faces are
  flagged.
\item If no faces are flagged, SymBase calls the driver's aliased
  function \texttt{DriverInterpolate}, which performs the actual
  interpolation.  This ends the chain of recursive calls.
\item If there are faces with symmetry conditions flagged, SymBase
  chooses one such face, and then calls this face's symmetry
  condition's ``symmetry interpolation'' routine, passing along all
  arguments.
\item The ``symmetry interpolation'' routine maps the coordinates into
  the domain by applying the symmetry condition for this face.  It
  then removes the flag for the corresponding face, and calls
  \texttt{SymmetryInterpolateFaces}, passing along the arguments with
  the changed interpolation locations.
\item After the actual interpolation has happened in the driver, the
  recursive call will return.  The ``symmetry interpolation'' routine
  then examines the tensor types of the interpolated quantities and
  un-maps the values back onto their original locations.  That is,
  e.g., after a reflection on the lower $x$-boundary, $x$-components
  of vectors need their sign changed.
\item The chain of recursive calls unravels until the call to
  \texttt{CCTK\_InterpGridArrays} returns.
\end{enumerate}
\begin{figure}[tb]
\begin{center}
\includegraphics[scale=.833,clip=true]{fig/recursion.eps}
\end{center}
\caption[Symmetry interpolation] {
  The recursive calls involved in symmety interpolation.
  Values of grid functions $a$ at global cartesian coordinates $x$ are 
  calculated by nested calls to the symmetry interpolators, which first
  apply the symmetry transformation to the coordinates.  When all
  the symmetries have been applied, the local interpolator is called,
  producing the interpolation of grid function values in the local basis.
  As the symmetry interpolators return, they apply the inverse basis
  transformation to the interpolated grid function values.
}
\label{SymBase_recursion}
\end{figure}

This mechanism has thus four players:
\begin{itemize}
\item The driver forwards the call to SymBase so that the list of
  interpolation points can be mapped into the domain.
\item Thorn SymBase controls which symmetry conditions perform this
  mapping on which faces.
\item Each symmetry boundary condition has to register a ``symmetry
  interpolation'' routine that first maps the points into the domain,
  then calls SymBase recursively, and finally corrects the tensor
  types of the interpolated quantities.
\item Finally, the user calls \texttt{CCTK\_InterpGridArrays} as before, and
  everything happens transparently for her.
\end{itemize}



\subsection{Driver Interaction}

The driver has to call SymBase's aliased function
\texttt{SymmetryInterpolate}, and has to provide an aliased function
\texttt{DriverInterpolate}.  Both functions have essentially the same
prototype as \texttt{CCTK\_InterpGridArrays}, which are:

\begin{verbatim}
CCTK_INT FUNCTION
    SymmetryInterpolate
        (CCTK_POINTER_TO_CONST IN cctkGH,
         CCTK_INT IN N_dims,
         CCTK_INT IN local_interp_handle,
         CCTK_INT IN param_table_handle,
         CCTK_INT IN coord_system_handle,
         CCTK_INT IN N_interp_points,
         CCTK_INT IN interp_coords_type,
         CCTK_POINTER_TO_CONST ARRAY IN interp_coords,
         CCTK_INT IN N_input_arrays,
         CCTK_INT ARRAY IN input_array_indices,
         CCTK_INT IN N_output_arrays,
         CCTK_INT ARRAY IN output_array_types,
         CCTK_POINTER ARRAY IN output_arrays)
\end{verbatim}

\begin{verbatim}
CCTK_INT FUNCTION
    DriverInterpolate
        (CCTK_POINTER_TO_CONST IN cctkGH,
         CCTK_INT IN N_dims,
         CCTK_INT IN local_interp_handle,
         CCTK_INT IN param_table_handle,
         CCTK_INT IN coord_system_handle,
         CCTK_INT IN N_interp_points,
         CCTK_INT IN interp_coords_type,
         CCTK_POINTER_TO_CONST ARRAY IN interp_coords,
         CCTK_INT IN N_input_arrays,
         CCTK_INT ARRAY IN input_array_indices,
         CCTK_INT IN N_output_arrays,
         CCTK_INT ARRAY IN output_array_types,
         CCTK_POINTER ARRAY IN output_arrays)
\end{verbatim}



\subsection{Interaction With Symmetry Conditions}

The symmetry conditions have to register their ``symmetry
interpolation'' routines by calling SymBase's aliased function
\texttt{SymmetryRegisterGridInterpolator}.  The ``symmetry
interpolation'' routine must use C linkage and must have the prototype

\begin{verbatim}
CCTK_INT symmetry_interpolate
    (CCTK_POINTER_TO_CONST IN cctkGH,
     CCTK_INT IN N_dims,
     CCTK_INT IN local_interp_handle,
     CCTK_INT IN param_table_handle,
     CCTK_INT IN coord_system_handle,
     CCTK_INT IN N_interp_points,
     CCTK_INT IN interp_coords_type,
     CCTK_POINTER_TO_CONST ARRAY IN interp_coords,
     CCTK_INT IN N_input_arrays,
     CCTK_INT ARRAY IN input_array_indices,
     CCTK_INT IN N_output_arrays,
     CCTK_INT ARRAY IN output_array_types,
     CCTK_POINTER ARRAY IN output_arrays,
     CCTK_INT IN faces)
\end{verbatim}

These arguments are essentially the same as those for
\texttt{CCTK\_InterpGridArrays}, except that the bit field \texttt{faces} flags
those faces that still need their symmetry boundary condition applied to
the interpolation points.  The aliased function
\texttt{SymmetryRegisterGridInterpolator} has the prototype

\begin{verbatim}
CCTK_INT FUNCTION                                           \
    SymmetryRegisterGridInterpolator                        \
        (CCTK_POINTER IN cctkGH,                            \
         CCTK_INT IN sym_handle,                            \
         CCTK_INT CCTK_FPOINTER IN symmetry_interpolate     \
             (CCTK_POINTER_TO_CONST IN cctkGH,              \
              CCTK_INT IN N_dims,                           \
              CCTK_INT IN local_interp_handle,              \
              CCTK_INT IN param_table_handle,               \
              CCTK_INT IN coord_system_handle,              \
              CCTK_INT IN N_interp_points,                  \
              CCTK_INT IN interp_coords_type,               \
              CCTK_POINTER_TO_CONST ARRAY IN interp_coords, \
              CCTK_INT IN N_input_arrays,                   \
              CCTK_INT ARRAY IN input_array_indices,        \
              CCTK_INT IN N_output_arrays,                  \
              CCTK_INT ARRAY IN output_array_types,         \
              CCTK_POINTER ARRAY IN output_arrays,          \
              CCTK_INT IN faces))
\end{verbatim}

which takes a function pointer to the aforementioned ``symmetry
interpolation'' routine, while \texttt{sym\_handle} specifies which
symmetry condition this routine is for.  This handle must have been
obtained from \texttt{SymmetryRegister}.

\begin{quote}
  The routine \texttt{SymmetryRegisterGridInterpolator} must be called
  \emph{after} the symmetry faces have been selected by the call to
  \texttt{SymmetryRegisterGrid}.
\end{quote}



\section{Tensor Types}

Cactus supports declaring the \emph{tensor type} of grid function
groups.  These tensor types define how the grid functions, which are
supposed to be tensor components, transform under various
transformations, such as reflections and rotations.

The tensor types are not declared directly; instead, a \emph{tensor
type alias} is declared.  The following tensor type aliases are
currently known and supported:
\begin{description}
\item[\texttt{scalar}:] a scalar $\rho$
\item[\texttt{u}:] a vector $\beta^i$
\item[\texttt{d}:] a covector $s_i$
\item[\texttt{dd\_sym}:] a symmetric rank two tensor $\gamma_{ij}$
\end{description}
(More tensor type aliases are likely to be defined in the future.)

In addition to the tensor type, one can also declare the \emph{tensor
weight} and a \emph{tensor metric}.  The tensor weight specifies the
behaviour under transformations that change the volume element.  The
tensor metric specifies what metric has to be used to raise or lower
indices for that quantity.

Last but not least, a \emph{tensor special} can be defined for
quantities that do not transform as tensor.  The currently supported
tensor specials are
\begin{description}
\item[\texttt{Gamma}:]
   for the transformation behaviour of the $\Gamma^i$ variables of the
   BSSN formalism; it is $\Gamma^i := - \gamma^{jk} \Gamma^i_{jk}$
   with $\Gamma^i_{jk} := \frac{1}{2} \gamma^{il} \left( \partial_k
   \gamma_{lj} + \partial_j \gamma_{lk} - \partial_l \gamma_{jk}
   \right)$
\item[\texttt{log}:]
   for the transformation behaviour of the variable $\phi$ of the BSSN
   formalism; it is $\phi := \log \psi$ with $\psi^{12} := \det
   \gamma_{ij}$.
\end{description}

\subsection{Example Tensor Type Declarations}

From CactusWave/WaveToy:
\begin{verbatim}
CCTK_REAL scalarevolve TYPE=gf TAGS='tensortypealias="scalar"'
\end{verbatim}

From CactusEinstein/ADMBase:
\begin{verbatim}
CCTK_REAL metric TYPE=gf TAGS='tensortypealias="dd_sym" tensormetric="ADMBase::metric"'
CCTK_REAL curv TYPE=gf TAGS='tensortypealias="dd_sym" tensormetric="ADMBase::metric"'
CCTK_REAL lapse TYPE=gf TAGS='tensortypealias="scalar" tensormetric="ADMBase::metric"'
CCTK_REAL shift TYPE=gf TAGS='tensortypealias="U" tensormetric="ADMBase::metric"'
\end{verbatim}

From AEIThorns/BSSN\_MoL:
\begin{verbatim}
CCTK_REAL ADM_BSSN_B TYPE=gf \
    TAGS='tensortypealias="u" tensormetric="ADMBase::metric"'
CCTK_REAL ADM_BSSN_dtlapse TYPE=gf \
    TAGS='tensortypealias="scalar" tensormetric="ADMBase::metric"'
CCTK_REAL ADM_BSSN_phi TYPE=gf \
    TAGS='tensortypealias="scalar" tensormetric="BSSN_MoL::ADM_BSSN_metric" \
          tensorweight=0.16666666666666667 tensorspecial="log"'
CCTK_REAL ADM_BSSN_metric TYPE=gf \
    TAGS='tensortypealias="dd_sym" tensormetric="BSSN_MoL::ADM_BSSN_metric" \
          tensorweight=-0.66666666666666667'
CCTK_REAL ADM_BSSN_K TYPE=gf \
    TAGS='tensortypealias="scalar" tensormetric="BSSN_MoL::ADM_BSSN_metric"'
CCTK_REAL ADM_BSSN_curv TYPE=gf \
    TAGS='tensortypealias="dd_sym" tensormetric="BSSN_MoL::ADM_BSSN_metric" \
          tensorweight=-0.66666666666666667'
CCTK_REAL ADM_BSSN_gamma TYPE=gf \
    TAGS='tensortypealias="u" tensormetric="BSSN_MoL::ADM_BSSN_metric" \
          tensorweight=0.66666666666666667 tensorspecial="Gamma"'
\end{verbatim}

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}