aboutsummaryrefslogtreecommitdiff
path: root/src/interpolate.c
blob: 884abe6add8a39775876d747b4183d98eeafa22b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "cctk.h"
#include "cctk_Parameters.h"

#include "util_ErrorCodes.h"
#include "util_Table.h"

#include "reflection.h"



static const char rcsid[] = "$Header$";
CCTK_FILEVERSION(AEIDevelopment_ReflectionSymmetry_interpolate_c);



CCTK_INT
ReflectionSymmetry_Interpolate (CCTK_POINTER_TO_CONST restrict const cctkGH_,
                                CCTK_INT const N_dims,
                                CCTK_INT const local_interp_handle,
                                CCTK_INT const param_table_handle,
                                CCTK_INT const coord_system_handle,
                                CCTK_INT const N_interp_points,
                                CCTK_INT const interp_coords_type,
                                CCTK_POINTER_TO_CONST restrict const interp_coords[],
                                CCTK_INT const N_input_arrays,
                                CCTK_INT const input_array_indices[],
                                CCTK_INT const N_output_arrays,
                                CCTK_INT const output_array_types[],
                                CCTK_POINTER restrict const output_arrays[],
                                CCTK_INT const faces)
{
  cGH const * restrict const cctkGH = cctkGH_;
  DECLARE_CCTK_PARAMETERS;
  
  int do_reflection[6];
  
  CCTK_POINTER_TO_CONST restrict new_interp_coords[3];
  CCTK_INT newfaces;
  
  CCTK_INT * restrict operand_indices;
  CCTK_INT * restrict operation_codes;
  CCTK_INT * restrict output_array_indices;
  
  int dir;
  
  int iret;
  
  int m;
  int n;
  int d;
  
  int ierr;
  
  
  
  /* Get symmetry information */
  do_reflection[0] = reflection_x;
  do_reflection[1] = reflection_upper_x;
  do_reflection[2] = reflection_y;
  do_reflection[3] = reflection_upper_y;
  do_reflection[4] = reflection_z;
  do_reflection[5] = reflection_upper_z;
  
  newfaces = faces;
  for (d=0; d<6; ++d)
  {
    if (do_reflection[d])
    {
      assert (newfaces & (1 << d));
      newfaces &= ~ (1 << d);
    }
  }
  
  
  
  /* Fold coordinates */
  assert (interp_coords_type == CCTK_VARIABLE_REAL);
  for (dir=0; dir<3; ++dir)
  {
    assert (! do_reflection[2*dir+1]);
    
    if (do_reflection[2*dir])
    {
      new_interp_coords[dir]
        = malloc (N_interp_points * sizeof (CCTK_REAL));
      assert (N_interp_points == 0 || new_interp_coords[dir]);
      
      for (n=0; n<N_interp_points; ++n)
      {
        CCTK_REAL const pos = ((CCTK_REAL const *)interp_coords[dir])[n];
        CCTK_REAL const newpos = fabs(pos);
        ((CCTK_REAL *)new_interp_coords[dir])[n] = newpos;
      }
    }
    else
    {
      new_interp_coords[dir] = interp_coords[dir];
    }
  }
  
  
  
  /* Recursive call */
  iret = SymmetryInterpolateFaces
    (cctkGH_, 
     N_dims, local_interp_handle, param_table_handle, coord_system_handle,
     N_interp_points, interp_coords_type, new_interp_coords,
     N_input_arrays, input_array_indices,
     N_output_arrays, output_array_types, output_arrays,
     newfaces);
  
  
  
  /* Free coordinates */
  for (dir=0; dir<3; ++dir)
  {
    if (do_reflection[2*dir])
    {
      free (new_interp_coords[dir]);
    }
  }
  
  
  /* Find output variable indices */
  operand_indices = malloc (N_output_arrays * sizeof *operand_indices);
  assert (operand_indices);
  ierr = Util_TableGetIntArray
    (param_table_handle, N_output_arrays, operand_indices, "operand_indices");
  if (ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY) {
    assert (N_output_arrays == N_input_arrays);
    for (m=0; m<N_output_arrays; ++m) {
      operand_indices[m] = m;   /* set output index to input index */
    }
  } else {
    assert (ierr == N_output_arrays);
  }
  
  operation_codes = malloc (N_output_arrays * sizeof *operation_codes);
  assert (operation_codes);
  ierr = Util_TableGetIntArray
    (param_table_handle, N_output_arrays, operation_codes, "operation_codes");
  if (ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY) {
    assert (N_output_arrays == N_input_arrays);
    for (m=0; m<N_output_arrays; ++m) {
      operation_codes[m] = 0;     /* do not take derivatives */
    }
  } else {
    assert (ierr == N_output_arrays);
  }
  
  output_array_indices
    = malloc (N_output_arrays * sizeof *output_array_indices);
  assert (output_array_indices);
  for (m=0; m<N_output_arrays; ++m) {
    assert (operand_indices[m]>=0 && operand_indices[m]<N_input_arrays);
    output_array_indices[m] = input_array_indices[operand_indices[m]];
     assert (output_array_indices[m]==-1
             || (output_array_indices[m]>=0
                 && output_array_indices[m]<CCTK_NumVars()));
  }
  
  
  
  /* Unfold tensor types */
  for (m=0; m<N_output_arrays; ++m)
  {
  if (output_array_indices[m]!=-1)
  {
    
    int vi, gi;
    int numvars, firstvar;
    char * groupname;
    
    int table;
    char tensortypealias[1000];
    enum tensortype { UNKNOWN, SCALAR, VECTOR, TENSOR };
    enum tensortype ttype;
    CCTK_INT tensorparity;
    int tcomponent;
    
    int parities[3];
    int check_dir[3];
    int needs_checking;
    
    
    
    vi = output_array_indices[m];
    assert (vi>=0 && vi<CCTK_NumVars());
    gi = CCTK_GroupIndexFromVarI (vi);
    assert (gi>=0 && gi<CCTK_NumGroups());
    numvars = CCTK_NumVarsInGroupI(gi);
    assert (numvars>0);
    firstvar = CCTK_FirstVarIndexI(gi);
    assert (firstvar>=0);
    table = CCTK_GroupTagsTableI(gi);
    assert (table>=0);

    
    
    /* Get and check tensor type information */
    ierr = Util_TableGetString
      (table, sizeof tensortypealias, tensortypealias, "tensortypealias");
    if (ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY) {
      groupname = CCTK_GroupName(gi);
      assert (groupname);
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Tensor type alias not declared for group \"%s\" -- assuming a scalar",
                  groupname);
      free (groupname);
      strcpy (tensortypealias, "scalar");
    } else if (ierr<0) {
      groupname = CCTK_GroupName(gi);
      assert (groupname);
      CCTK_VWarn (0, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Error in tensor type alias declaration for group \"%s\"",
                  groupname);
      free (groupname);
    }
    
    ttype = UNKNOWN;
    tcomponent = 0;
    if (CCTK_EQUALS (tensortypealias, "scalar"))
    {
      /* scalar */
      if (numvars != 1) {
        groupname = CCTK_GroupName(gi);
        assert (groupname);
        CCTK_VWarn (2, __LINE__, __FILE__, CCTK_THORNSTRING,
                    "Group \"%s\" has the tensor type alias \"scalar\", but contains more than 1 element",
                    groupname);
        free (groupname);
      }
      ttype = SCALAR;
      tcomponent = 0;
    }
    else if (CCTK_EQUALS (tensortypealias, "u")
             || CCTK_EQUALS (tensortypealias, "d"))
    {
      /* vector */
      assert (numvars == 3);
      ttype = VECTOR;
      tcomponent = vi - firstvar;
    } else if (CCTK_EQUALS (tensortypealias, "uu_sym")
               || CCTK_EQUALS (tensortypealias, "dd_sym")) {
      /* symmetric tensor */
      assert (numvars == 6);
      ttype = TENSOR;
      tcomponent = vi - firstvar;
    } else {
      char * groupname = CCTK_GroupName(gi);
      assert (groupname);
      CCTK_VWarn (0, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Illegal tensor type alias for group \"%s\"",
                  groupname);
      free (groupname);
    }
    
    switch (ttype)
    {
    case SCALAR:
      assert (tcomponent>=0 && tcomponent<1);
      break;
    case VECTOR:
      assert (tcomponent>=0 && tcomponent<3);
      break;
    case TENSOR:
      assert (tcomponent>=0 && tcomponent<6);
      break;
    default:
      assert (0);
    }
    
    ierr = Util_TableGetInt (table, & tensorparity, "tensorparity");
    if (ierr == UTIL_ERROR_TABLE_NO_SUCH_KEY) {
      tensorparity = +1;
    } else if (ierr<0) {
      groupname = CCTK_GroupName(gi);
      assert (groupname);
      CCTK_VWarn (0, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Error in tensor parity declaration for group \"%s\"",
                  groupname);
      free (groupname);
    }
    
    
    
    /* Calculate parities */
    parities[0] = parities[1] = parities[2] = +1;
    switch (ttype)
    {
    case SCALAR:
      /* do nothing */
      break;
    case VECTOR:
      parities[tcomponent] = -1;
      break;
    case TENSOR:
      switch (tcomponent)
      {
      case 0: break;
      case 1: parities[0] = parities[1] = -1; break;
      case 2: parities[0] = parities[2] = -1; break;
      case 3: break;
      case 4: parities[1] = parities[2] = -1; break;
      case 5: break;
      default: assert (0);
      }
      break;
    default:
      assert (0);
    }
    
    
    
    /* Take derivatives into account */
    {
      int code = operation_codes[m];
      while (code) {
        const int d = code % 10 - 1;
        code /= 10;
        assert (d>=0 && d<3);
        parities[d] *= -1;
      }
    }
    
    
    
    /* Are there negative parities? */
    needs_checking = 0;
    for (dir=0; dir<3; ++dir)
    {
      check_dir[dir] = do_reflection[2*dir] && parities[dir] < 0;
      needs_checking |= check_dir[dir];
    }
    
    
    
    /* Loop over all points and unfold */
    if (needs_checking)
    {
      for (n=0; n<N_interp_points; ++n)
      {
        int parity = tensorparity;
        /* Is the point outside the domain? */
        for (dir=0; dir<3; ++dir)
        {
          if (check_dir[dir])
          {
            CCTK_REAL const pos = ((CCTK_REAL const *)interp_coords[dir])[n];
            if (pos < 0)
            {
              /* Reflect the tensor component */
              parity *= -1;
            }
          }
        }
        ((CCTK_REAL *)output_arrays[m])[n] *= parity;
      }
    }
    
  }
  } /* for m */
  
  
  
  /* Free output variable indices */
  free (operand_indices);
  free (operation_codes);
  free (output_array_indices);
  
  
  
  /* Return */
  return iret;
}