summaryrefslogtreecommitdiff
path: root/src/fill_eq_coeffs_template.c
blob: 6e06c01e060695c1025667f7761d431869b9b8ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#ifdef ELEM_SCALAR

# define TYPE scalar

# define ELEM_TYPE double

# define ELEM_SPLAT(x) (x)

# define LOAD(arr, idx) (arr[idx])
# define STORE(arr, idx, val) arr[idx] = val

#elif defined ELEM_AVX512

# define TYPE avx512

# define ELEM_TYPE __m512d

# define ELEM_SPLAT(x) _mm512_set1_pd(x)

#define LOAD(arr, idx)       _mm512_loadu_pd((arr) + (idx))
#define STORE(arr, idx, val) _mm512_storeu_pd((arr) + (idx), val)
#elif defined ELEM_AVX2

# define TYPE avx2

# define ELEM_TYPE __m256d

# define ELEM_SPLAT(x) _mm256_set1_pd(x)

#define LOAD(arr, idx)       _mm256_loadu_pd((arr) + (idx))
#define STORE(arr, idx, val) _mm256_storeu_pd((arr) + (idx), val)
#else
# error "Unknown element type"
#endif

#define ELEM_SIZE sizeof(ELEM_TYPE) / sizeof(double)

// while gcc supports multiplying vectors by scalars, icc does not,
// which forces us to do this
#define ZERO   ELEM_SPLAT(0.0)
#define ONE    ELEM_SPLAT(1.0)
#define TWO    ELEM_SPLAT(2.0)
#define SIX    ELEM_SPLAT(6.0)
#define EIGHT  ELEM_SPLAT(8.0)
#define C16    ELEM_SPLAT(16.0)
#define C30    ELEM_SPLAT(30.0)

#define HALF   ELEM_SPLAT(0.5)
#define THIRD  ELEM_SPLAT(1.0 / 3.0)
#define C1_12  ELEM_SPLAT(1.  / 12.0)
#define C1_144 ELEM_SPLAT(1.0 / 144.0)

#define JOIN2(a, b) a ## _ ## b
#define FUNC2(name, type) JOIN2(name, type)
#define FUNC(name) FUNC2(name, TYPE)

static inline ELEM_TYPE FUNC(fd1_4)(const double *arr, const ptrdiff_t stride, const ELEM_TYPE h_inv)
{
    const ELEM_TYPE ap2 = LOAD(arr,  2 * stride);
    const ELEM_TYPE ap1 = LOAD(arr,  1 * stride);
    const ELEM_TYPE am1 = LOAD(arr, -1 * stride);
    const ELEM_TYPE am2 = LOAD(arr, -2 * stride);
    return (-ap2 + EIGHT * ap1 - EIGHT * am1 + am2) * h_inv * C1_12;
}

static inline ELEM_TYPE FUNC(fd2_4)(const double *arr, const ptrdiff_t stride, const ELEM_TYPE h_inv)
{
    const ELEM_TYPE ap2 = LOAD(arr,  2 * stride);
    const ELEM_TYPE ap1 = LOAD(arr,  1 * stride);
    const ELEM_TYPE a0  = LOAD(arr,  0 * stride);
    const ELEM_TYPE am1 = LOAD(arr, -1 * stride);
    const ELEM_TYPE am2 = LOAD(arr, -2 * stride);
    return (-ap2 + C16 * ap1 - C30 * a0 + C16 * am1 - am2) * SQR(h_inv) * C1_12;
}

static inline ELEM_TYPE FUNC(fd11_4)(const double *arr, ptrdiff_t stride_x, ptrdiff_t stride_z,
                                     ELEM_TYPE dx_inv, ELEM_TYPE dz_inv)
{
    const ELEM_TYPE ap2p2 = LOAD(arr,  2 * stride_x + 2 * stride_z);
    const ELEM_TYPE ap2p1 = LOAD(arr,  2 * stride_x + 1 * stride_z);
    const ELEM_TYPE ap2m1 = LOAD(arr,  2 * stride_x - 1 * stride_z);
    const ELEM_TYPE ap2m2 = LOAD(arr,  2 * stride_x - 2 * stride_z);

    const ELEM_TYPE ap1p2 = LOAD(arr,  1 * stride_x + 2 * stride_z);
    const ELEM_TYPE ap1p1 = LOAD(arr,  1 * stride_x + 1 * stride_z);
    const ELEM_TYPE ap1m1 = LOAD(arr,  1 * stride_x - 1 * stride_z);
    const ELEM_TYPE ap1m2 = LOAD(arr,  1 * stride_x - 2 * stride_z);

    const ELEM_TYPE am1p2 = LOAD(arr, -1 * stride_x + 2 * stride_z);
    const ELEM_TYPE am1p1 = LOAD(arr, -1 * stride_x + 1 * stride_z);
    const ELEM_TYPE am1m1 = LOAD(arr, -1 * stride_x - 1 * stride_z);
    const ELEM_TYPE am1m2 = LOAD(arr, -1 * stride_x - 2 * stride_z);

    const ELEM_TYPE am2p2 = LOAD(arr, -2 * stride_x + 2 * stride_z);
    const ELEM_TYPE am2p1 = LOAD(arr, -2 * stride_x + 1 * stride_z);
    const ELEM_TYPE am2m1 = LOAD(arr, -2 * stride_x - 1 * stride_z);
    const ELEM_TYPE am2m2 = LOAD(arr, -2 * stride_x - 2 * stride_z);

    return (-ONE   * (-ap2p2 + EIGHT * ap1p2 - EIGHT * am1p2 + am2p2)
            +EIGHT * (-ap2p1 + EIGHT * ap1p1 - EIGHT * am1p1 + am2p1)
            -EIGHT * (-ap2m1 + EIGHT * ap1m1 - EIGHT * am1m1 + am2m1)
            +ONE   * (-ap2m2 + EIGHT * ap1m2 - EIGHT * am1m2 + am2m2)) * dx_inv * dz_inv * C1_144;
}

#if 0
#define FD8(arr, stride, h_inv) \
    ((-3.0 * arr[4 * stride] + 32.0 * arr[3 * stride] - 168.0 * arr[2 * stride] + 672.0 * arr[1 * stride] \
      - 672.0 * arr[-1 * stride] + 168.0 * arr[-2 * stride] - 32.0 * arr[-3 * stride] + 3.0 * arr[-4 * stride]) * h_inv / 840.0)
#define FD28(arr, stride, h_inv) \
    ((-9.0 * arr[ 4 * stride] + 128.0 * arr[ 3 * stride] - 1008.0 * arr[ 2 * stride] + 8064.0 * arr[ 1 * stride]    \
      -9.0 * arr[-4 * stride] + 128.0 * arr[-3 * stride] - 1008.0 * arr[-2 * stride] + 8064.0 * arr[-1 * stride]    \
      - 14350.0 * arr[0]) * SQR(h_inv) / 5040.0)

static double diff8_dx(const double *arr, ptrdiff_t stride, double h_inv)
{
    return FD8(arr, 1, h_inv);
}
static double diff8_dz(const double *arr, ptrdiff_t stride, double h_inv)
{
    return FD8(arr, stride, h_inv);
}

static double diff8_dxx(const double *arr, ptrdiff_t stride, double h_inv)
{
    return FD28(arr, 1, h_inv);
}
static double diff8_dzz(const double *arr, ptrdiff_t stride, double h_inv)
{
    return FD28(arr, stride, h_inv);
}
static double diff8_dxz(const double *arr, ptrdiff_t stride, double dx_inv, double dz_inv)
{
    static const double fd_coeffs[] = {  3.0, -32.0,   168.0, -672.0,      0.0,  672.0,  -168.0,  32.0, -3.0 };
    static const int stencil = ARRAY_ELEMS(fd_coeffs) / 2;
    double val = 0.0;
    for (int j = -stencil; j <= stencil; j++) {
        double tmp = 0.0;
        for (int i = -stencil; i <= stencil; i++)
            tmp += fd_coeffs[i + stencil] * arr[j * stride + i];
        val += fd_coeffs[j + stencil] * tmp;
    }
    return val * dx_inv * dz_inv / SQR(840.0);
}

#define diff1   fd1_8
#define diff2   fd2_8
#define diff11 fd11_8
#else
#define diff1   FUNC(fd1_4)
#define diff2   FUNC(fd2_4)
#define diff11 FUNC(fd11_4)
#endif

#define diff_dx(arr, stride, dx_inv, dz_inv)    (diff1 (arr,      1,         dx_inv))
#define diff_dz(arr, stride, dx_inv, dz_inv)    (diff1 (arr, stride,         dz_inv))
#define diff_dxx(arr, stride, dx_inv, dz_inv)   (diff2 (arr,      1,         dx_inv))
#define diff_dzz(arr, stride, dx_inv, dz_inv)   (diff2 (arr, stride,         dz_inv))
#define diff_dxz(arr, stride, dx_inv, dz_inv)   (diff11(arr,      1, stride, dx_inv, dz_inv))

static void
FUNC(fill_eq_coeffs_line)(const cGH *gh, const CoordPatch *cp, MG2DContext *solver,
                          const double * const vars[],
                          const int idx_x_start, const int idx_x_end,
                          const int idx_z,
                          const ptrdiff_t stride_z, const double dx_inv_scal, const double dz_inv_scal)
{
    const ELEM_TYPE dx_inv = ELEM_SPLAT(dx_inv_scal);
    const ELEM_TYPE dz_inv = ELEM_SPLAT(dz_inv_scal);

    for (int idx_x = idx_x_start; idx_x < idx_x_end; idx_x += ELEM_SIZE) {
        const int idx_src = CCTK_GFINDEX3D(gh, idx_x + cp->offset_left[0], cp->y_idx, idx_z + cp->offset_left[1]);
        const int idx_dc  = idx_z * solver->diff_coeffs[0]->stride + idx_x;
        const int idx_rhs = idx_z * solver->rhs_stride + idx_x;

        ELEM_TYPE K[3][3], Km[3][3], Ku[3][3], dK[3][3][3];
        ELEM_TYPE gtu[3][3], g[3][3], gu[3][3];
        ELEM_TYPE dg[3][3][3], dgu[3][3][3], d2g[3][3][3][3], gudot[3][3];
        ELEM_TYPE G[3][3][3], dG[3][3][3][3], Gdot[3][3][3], X[3];
        ELEM_TYPE Ric[3][3], Ricm[3][3];
        ELEM_TYPE dgdot[3][3][3];
        ELEM_TYPE D2alpha[3][3];
        ELEM_TYPE Kdot[3][3];
        ELEM_TYPE k2, Kij_Dij_alpha, k_kdot, k3;
        ELEM_TYPE Gammadot_term, beta_term;

        ELEM_TYPE betal[3], dbetal[3][3], d2betal[3][3][3];

#define LOAD_VAR(var)   LOAD  ( vars[RHS_VAR_ ## var], idx_src)
#define DX(var)        (diff1 (&vars[RHS_VAR_ ## var][idx_src],        1,           dx_inv        ))
#define DZ(var)        (diff1 (&vars[RHS_VAR_ ## var][idx_src],           stride_z,         dz_inv))
#define DXX(var)       (diff2 (&vars[RHS_VAR_ ## var][idx_src],        1,           dx_inv))
#define DZZ(var)       (diff2 (&vars[RHS_VAR_ ## var][idx_src],           stride_z,         dz_inv))
#define DXZ(var)       (diff11(&vars[RHS_VAR_ ## var][idx_src],        1, stride_z, dx_inv, dz_inv))

        const ELEM_TYPE x = LOAD_VAR(X);

// special treatment for the axis is only implemented in the scalar version
#ifdef ELEM_SCALAR
        const int on_axis = fabs(x) < 1e-13;

# define AXIS_VAL(axis, normal) (on_axis ? (axis) : (normal))
#else
        const int on_axis = 0;

# define AXIS_VAL(axis, normal) (normal)
#endif

        const ELEM_TYPE gtxx  = LOAD_VAR(GTXX);
        const ELEM_TYPE gtyy  = LOAD_VAR(GTYY);
        const ELEM_TYPE gtzz  = LOAD_VAR(GTZZ);
        const ELEM_TYPE gtxy  = LOAD_VAR(GTXY);
        const ELEM_TYPE gtxz  = LOAD_VAR(GTXZ);
        const ELEM_TYPE gtyz  = LOAD_VAR(GTYZ);

        const ELEM_TYPE gt[3][3] = {{ gtxx, gtxy, gtxz },
                                    { gtxy, gtyy, gtyz },
                                    { gtxz, gtyz, gtzz }};

        const ELEM_TYPE dx_gt11 = DX(GTXX);
        const ELEM_TYPE dx_gt22 = DX(GTYY);
        const ELEM_TYPE dx_gt33 = DX(GTZZ);
        const ELEM_TYPE dx_gt13 = DX(GTXZ);

        const ELEM_TYPE dz_gt11 = DZ(GTXX);
        const ELEM_TYPE dz_gt22 = DZ(GTYY);
        const ELEM_TYPE dz_gt33 = DZ(GTZZ);
        const ELEM_TYPE dz_gt13 = DZ(GTXZ);

        const ELEM_TYPE dgt[3][3][3] = {
            {
                { dx_gt11,     ZERO, dx_gt13 },
                {    ZERO,  dx_gt22,    ZERO },
                { dx_gt13,     ZERO, dx_gt33 },
            },
            {
                {     ZERO, AXIS_VAL(dx_gt11 - dx_gt22, (gtxx - gtyy) / x), ZERO },
                { AXIS_VAL(dx_gt11 - dx_gt22, (gtxx - gtyy) / x), ZERO, AXIS_VAL(dx_gt13, gtxz / x) },
                { ZERO, AXIS_VAL(dx_gt13, gtxz / x), ZERO },
            },
            {
                { dz_gt11,     ZERO, dz_gt13 },
                {    ZERO,  dz_gt22,    ZERO },
                { dz_gt13,     ZERO, dz_gt33 },
            },
        };

        const ELEM_TYPE dxx_gt11 = DXX(GTXX);
        const ELEM_TYPE dxx_gt22 = DXX(GTYY);
        const ELEM_TYPE dxx_gt33 = DXX(GTZZ);
        const ELEM_TYPE dxx_gt13 = DXX(GTXZ);

        const ELEM_TYPE dxz_gt11 = DXZ(GTXX);
        const ELEM_TYPE dxz_gt22 = DXZ(GTYY);
        const ELEM_TYPE dxz_gt33 = DXZ(GTZZ);
        const ELEM_TYPE dxz_gt13 = DXZ(GTXZ);

        const ELEM_TYPE dzz_gt11 = DZZ(GTXX);
        const ELEM_TYPE dzz_gt22 = DZZ(GTYY);
        const ELEM_TYPE dzz_gt33 = DZZ(GTZZ);
        const ELEM_TYPE dzz_gt13 = DZZ(GTXZ);

        const ELEM_TYPE d2gt[3][3][3][3] = {
            {
                {
                    { dxx_gt11,      ZERO, dxx_gt13 },
                    { ZERO,      dxx_gt22,      ZERO },
                    { dxx_gt13,      ZERO, dxx_gt33 },
                },
                {
                    {      ZERO, AXIS_VAL(HALF * (dxx_gt11 - dxx_gt22), (dx_gt11 - dx_gt22) / x - (gtxx - gtyy) / SQR(x)), ZERO },
                    { AXIS_VAL(HALF * (dxx_gt11 - dxx_gt22), (dx_gt11 - dx_gt22) / x - (gtxx - gtyy) / SQR(x)), ZERO,
                        AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)) },
                    { ZERO, AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)), ZERO },
                },
                {
                    { dxz_gt11,     ZERO, dxz_gt13 },
                    { ZERO,     dxz_gt22,      ZERO },
                    { dxz_gt13,     ZERO, dxz_gt33 },
                },

            },
            {
                {
                    { ZERO, AXIS_VAL(HALF * (dxx_gt11 - dxx_gt22), (dx_gt11 - dx_gt22) / x - (gtxx - gtyy) / SQR(x)), ZERO },
                    { AXIS_VAL(HALF * (dxx_gt11 - dxx_gt22), (dx_gt11 - dx_gt22) / x - (gtxx - gtyy) / SQR(x)), ZERO,
                        AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)) },
                    { ZERO, AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)), ZERO },
                },
                {
                    { AXIS_VAL(dxx_gt22, dx_gt11 / x - 2 * (gtxx - gtyy) / SQR(x)), ZERO,
                       AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)) },
                    { ZERO, AXIS_VAL(dxx_gt11, dx_gt22 / x + 2.0 * (gtxx - gtyy) / SQR(x)), ZERO },
                    { AXIS_VAL(HALF * dxx_gt13, dx_gt13 / x - gtxz / SQR(x)), ZERO,
                        AXIS_VAL(dxx_gt33, dx_gt33 / x) },
                },
                {
                    { ZERO, AXIS_VAL(dxz_gt11 - dxz_gt22, (dz_gt11 - dz_gt22) / x), ZERO },
                    { AXIS_VAL(dxz_gt11 - dxz_gt22, (dz_gt11 - dz_gt22) / x), ZERO,
                       AXIS_VAL(dxz_gt13, dz_gt13 / x) },
                    { ZERO, AXIS_VAL(dxz_gt13, dz_gt13 / x), ZERO },
                },

            },
            {
                {
                    { dxz_gt11,      ZERO, dxz_gt13 },
                    {      ZERO, dxz_gt22,      ZERO },
                    { dxz_gt13,      ZERO, dxz_gt33 },
                },
                {
                    { ZERO, AXIS_VAL(dxz_gt11 - dxz_gt22, (dz_gt11 - dz_gt22) / x), ZERO },
                    { AXIS_VAL(dxz_gt11 - dxz_gt22, (dz_gt11 - dz_gt22) / x), ZERO,
                       AXIS_VAL(dxz_gt13, dz_gt13 / x) },
                    { ZERO, AXIS_VAL(dxz_gt13, dz_gt13 / x), ZERO },
                },
                {
                    { dzz_gt11,      ZERO, dzz_gt13 },
                    {      ZERO, dzz_gt22,      ZERO },
                    { dzz_gt13,      ZERO, dzz_gt33 },
                },

            },
        };

        const ELEM_TYPE Atxx  = LOAD_VAR(ATXX);
        const ELEM_TYPE Atyy  = LOAD_VAR(ATYY);
        const ELEM_TYPE Atzz  = LOAD_VAR(ATZZ);
        const ELEM_TYPE Atxy  = LOAD_VAR(ATXY);
        const ELEM_TYPE Atxz  = LOAD_VAR(ATXZ);
        const ELEM_TYPE Atyz  = LOAD_VAR(ATYZ);

        const ELEM_TYPE At[3][3] = {
            { Atxx, Atxy, Atxz },
            { Atxy, Atyy, Atyz },
            { Atxz, Atyz, Atzz }};

        const ELEM_TYPE dx_At11 = DX(ATXX);
        const ELEM_TYPE dx_At22 = DX(ATYY);
        const ELEM_TYPE dx_At33 = DX(ATZZ);
        const ELEM_TYPE dx_At13 = DX(ATXZ);

        const ELEM_TYPE dz_At11 = DZ(ATXX);
        const ELEM_TYPE dz_At22 = DZ(ATYY);
        const ELEM_TYPE dz_At33 = DZ(ATZZ);
        const ELEM_TYPE dz_At13 = DZ(ATXZ);

        const ELEM_TYPE dAt[3][3][3] = {
            {
                { dx_At11,     ZERO, dx_At13 },
                {     ZERO, dx_At22,     ZERO },
                { dx_At13,     ZERO, dx_At33 },
            },
            {
                {     ZERO, AXIS_VAL(dx_At11 - dx_At22, (Atxx - Atyy) / x), ZERO },
                { AXIS_VAL(dx_At11 - dx_At22, (Atxx - Atyy) / x), ZERO, AXIS_VAL(dx_At13, Atxz / x) },
                { ZERO, AXIS_VAL(dx_At13, Atxz / x), ZERO },
            },
            {
                { dz_At11,     ZERO, dz_At13 },
                {     ZERO, dz_At22,     ZERO },
                { dz_At13,     ZERO, dz_At33 },
            },
        };

        const ELEM_TYPE phi     = LOAD_VAR(PHI);
        const ELEM_TYPE dphi[3] = { DX(PHI), ZERO, DZ(PHI) };

        const ELEM_TYPE dxx_phi = DXX(PHI);
        const ELEM_TYPE dzz_phi = DZZ(PHI);
        const ELEM_TYPE dxz_phi = DXZ(PHI);

        const ELEM_TYPE d2phi[3][3] = {
            { dxx_phi,                             ZERO, dxz_phi },
            {     ZERO, AXIS_VAL(dxx_phi, dphi[0] / x),     ZERO },
            { dxz_phi,                             ZERO, dzz_phi },
        };

        const ELEM_TYPE trK     = LOAD_VAR(TRK);
        const ELEM_TYPE dtrK[3] = { DX(TRK), ZERO, DZ(TRK) };

        const ELEM_TYPE  Xtx  = LOAD_VAR(XTX);
        const ELEM_TYPE  Xtz  = LOAD_VAR(XTZ);

        const ELEM_TYPE alpha     = LOAD_VAR(ALPHA);
        const ELEM_TYPE dx_alpha  = DX(ALPHA);
        const ELEM_TYPE dz_alpha  = DZ(ALPHA);

        const ELEM_TYPE dalpha[3] = { dx_alpha, ZERO, dz_alpha };

        const ELEM_TYPE dxx_alpha  = DXX(ALPHA);
        const ELEM_TYPE dzz_alpha  = DZZ(ALPHA);
        const ELEM_TYPE dxz_alpha  = DXZ(ALPHA);

        const ELEM_TYPE d2alpha[3][3] = {{ dxx_alpha,                             ZERO, dxz_alpha },
                                         {      ZERO, AXIS_VAL(dxx_alpha, dx_alpha / x),     ZERO },
                                         { dxz_alpha,                             ZERO, dzz_alpha }};

        const ELEM_TYPE betax  = LOAD_VAR(BETAX);
        const ELEM_TYPE betaz  = LOAD_VAR(BETAX);

        const ELEM_TYPE beta[3] = { betax, ZERO, betaz };

        const ELEM_TYPE dx_betax  = DX(BETAX);
        const ELEM_TYPE dz_betax  = DZ(BETAX);

        const ELEM_TYPE dx_betaz  = DX(BETAZ);
        const ELEM_TYPE dz_betaz  = DZ(BETAZ);

        const ELEM_TYPE dbeta[3][3] = {{ dx_betax,      ZERO, dx_betaz },
                                       {      ZERO, AXIS_VAL(dx_betax, betax / x),      ZERO },
                                       { dz_betax,      ZERO, dz_betaz }};

        const ELEM_TYPE dxx_betax = DXX(BETAX);
        const ELEM_TYPE dxz_betax = DXZ(BETAX);
        const ELEM_TYPE dzz_betax = DZZ(BETAX);

        const ELEM_TYPE dxx_betaz = DXX(BETAZ);
        const ELEM_TYPE dxz_betaz = DXZ(BETAZ);
        const ELEM_TYPE dzz_betaz = DZZ(BETAZ);

#undef LOAD_VAR
#undef DX
#undef DZ
#undef DXX
#undef DZZ
#undef DXZ

        const ELEM_TYPE d2beta[3][3][3] = {
            {
                { dxx_betax, ZERO, dxx_betaz },
                { ZERO, AXIS_VAL(0.5 * dxx_betax, dx_betax / x - betax / SQR(x)), ZERO },
                { dxz_betax, ZERO, dxz_betaz },
            },
            {
                { ZERO, AXIS_VAL(0.5 * dxx_betax, dx_betax / x - betax / SQR(x)), ZERO },
                { AXIS_VAL(0.5 * dxx_betax, dx_betax / x - betax / SQR(x)), ZERO, AXIS_VAL(dxx_betaz, dx_betaz / x) },
                { ZERO, AXIS_VAL(dxz_betax, dz_betax / x), ZERO },
            },
            {
                { dxz_betax, ZERO, dxz_betaz },
                { ZERO, AXIS_VAL(dxz_betax, dz_betax / x), ZERO },
                { dzz_betax, ZERO, dzz_betaz },
            },
        };

        const ELEM_TYPE det = gtxx * gtyy * gtzz + 2 * gtxy * gtyz * gtxz - gtzz * SQR(gtxy) - SQR(gtxz) * gtyy - gtxx * SQR(gtyz);

        // \tilde{γ}^{ij}
        gtu[0][0] =  (gtyy * gtzz - SQR(gtyz)) / det;
        gtu[1][1] =  (gtxx * gtzz - SQR(gtxz)) / det;
        gtu[2][2] =  (gtxx * gtyy - SQR(gtxy)) / det;
        gtu[0][1] = -(gtxy * gtzz - gtyz * gtxz) / det;
        gtu[0][2] =  (gtxy * gtyz - gtyy * gtxz) / det;
        gtu[1][2] = -(gtxx * gtyz - gtxy * gtxz) / det;
        gtu[1][0] = gtu[0][1];
        gtu[2][0] = gtu[0][2];
        gtu[2][1] = gtu[1][2];

        // γ_{jk}/^{jk}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                gu[j][k] = SQR(phi) * gtu[j][k];
                g[j][k]  = gt[j][k] / SQR(phi);
            }

        // β_j
        for (int j = 0; j < 3; j++) {
            ELEM_TYPE val = ZERO;
            for (int k = 0; k < 3; k++)
                val += g[j][k] * beta[k];
            betal[j] = val;
        }

        // ∂_j γ_{kl}
        // ∂_j K_{kl}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    dg[j][k][l] = -TWO * dphi[j] * gt[k][l] / (phi * SQR(phi)) + dgt[j][k][l] / SQR(phi);
                    dK[j][k][l] = -TWO * dphi[j] * At[k][l] / (phi * SQR(phi)) + dAt[j][k][l] / SQR(phi) +
                                  THIRD * (dtrK[j] * g[k][l] + trK * dg[j][k][l]);
                }

        // ∂_{jk} g_{lm}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++)
                    for (int m = 0; m < 3; m++) {
                        d2g[j][k][l][m] = SIZ *  gt      [l][m] * dphi[j] * dphi[k] / SQR(SQR(phi))    -
                                          TWO *  gt      [l][m] * d2phi[j][k]       / (phi * SQR(phi)) -
                                          TWO * dgt   [j][l][m] * dphi[k]           / (phi * SQR(phi)) -
                                          TWO * dgt   [k][l][m] * dphi[j]           / (phi * SQR(phi)) +
                                               d2gt[j][k][l][m]                     / SQR(phi);
                    }

        // ∂_j γ^{kl}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    ELEM_TYPE val = ZERO;
                    for (int m = 0; m < 3; m++)
                        for (int n = 0; n < 3; n++)
                            val += -gu[k][m] * gu[l][n] * dg[j][m][n];
                    dgu[j][k][l] = val;
                }

        // Γ^j_{kl}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    ELEM_TYPE val = ZERO;
                    for (int m = 0; m < 3; m++)
                        val += HALF * gu[j][m] * (dg[k][l][m] + dg[l][k][m] - dg[m][k][l]);
                    G[j][k][l] = val;
                }

        // ∂_j Γ^k_{lm}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++)
                    for (int m = 0; m < 3; m++) {
                        ELEM_TYPE val = ZERO;
                        for (int n = 0; n < 3; n++) {
                            val += dgu[j][k][n] * (dg    [l][m][n] +  dg   [m][l][n] -  dg   [n][l][m]) +
                                    gu   [k][n] * (d2g[j][l][m][n] + d2g[j][m][l][n] - d2g[j][n][l][m]);
                        }
                        dG[j][k][l][m] = HALF * val;
                    }

        // Γ^j = γ^{kl} Γ_{kl}^j
        for (int j = 0; j < 3; j++) {
            ELEM_TYPE val = ZERO;
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++)
                    val += gu[k][l] * G[j][k][l];
            X[j] = val;
        }

        // ∂_j β_k
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += g[k][l] * dbeta[j][l] + dg[j][k][l] * beta[l];
                dbetal[j][k] = val;
            }

        // ∂_{jk} β_l
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    ELEM_TYPE val = ZERO;
                    for (int m = 0; m < 3; m++)
                        val += d2g[j][k][l][m] * beta[m] + dg[k][l][m] * dbeta[j][m] + dg[j][l][m] * dbeta[k][m] +
                               g[l][m] * d2beta[j][k][m];
                    d2betal[j][k][l] = val;
                }

        // K_{ij}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                K[j][k] = At[j][k] / SQR(phi) + THIRD * g[j][k] * trK;

        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += gu[j][l] * K[l][k];
                Km[j][k] = val;
            }

        // K^{ij}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += gu[j][l] * Km[k][l];
                Ku[j][k] = val;
            }

        // ∂_j \dot{γ_kl}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    dgdot[j][k][l] = -TWO * (dalpha[j] * K[k][l] + alpha * dK[j][k][l]) +
                                     d2betal[j][k][l] + d2betal[j][l][k];
                    for (int m = 0; m < 3; m++)
                        dgdot[j][k][l] += -TWO * (dG[j][m][k][l] * betal[m] + G[m][k][l] * dbetal[j][m]);
                }

        // \dot{γ^{jk}}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                gudot[j][k] = TWO * alpha * Ku[j][k];

                for (int l = 0; l < 3; l++) {
                    gudot[j][k] += -gu[j][l] * dbeta[l][k] - gu[k][l] * dbeta[l][j];

                    for (int m = 0; m < 3; m++)
                        gudot[j][k] += -gu[j][l] * G[k][l][m] * beta[m] - gu[k][l] * G[j][l][m] * beta[m];
                }
            }


        // \dot{Γ}^j_{kl}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    ELEM_TYPE val = ZERO;
                    for (int m = 0; m < 3; m++)
                        val += gudot[j][m] * (dg   [k][l][m] + dg   [l][k][m] - dg   [m][k][l]) +
                               gu   [j][m] * (dgdot[k][l][m] + dgdot[l][k][m] - dgdot[m][k][l]);

                    Gdot[j][k][l] = HALF * val;
                }

        Gammadot_term = ZERO;
        for (int j = 0; j < 3; j++) {
            ELEM_TYPE val = ZERO;
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    val += gu[k][l] * Gdot[j][k][l];
                }

            Gammadot_term += val * dalpha[j];
        }

        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += G[l][j][k] * dalpha[l];

                D2alpha[j][k] = d2alpha[j][k] - val;
            }

        Kij_Dij_alpha = ZERO;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                Kij_Dij_alpha += Ku[j][k] * D2alpha[j][k];
            }

        k3 = ZERO;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += Km[k][l] * Km[l][j];
                k3 += val * Km[j][k];
            }

        // K_{ij} K^{ij}
        k2 = ZERO;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                k2 += Km[j][k] * Km[k][j];

        // Ric_{jk}
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int m = 0; m < 3; m++)
                    val += dG[m][m][j][k] - dG[k][m][j][m];
                for (int m = 0; m < 3; m++)
                    for (int l = 0; l < 3; l++)
                        val += G[l][l][m] * G[m][j][k] - G[l][k][m] * G[m][j][l];
                Ric[j][k] = val;
            }

        // Ric^j_k
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += gu[j][l] * Ric[l][k];
                Ricm[j][k] = val;
            }

        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                ELEM_TYPE val = ZERO;
                for (int l = 0; l < 3; l++)
                    val += K[j][l] * Km[l][k];

                Kdot[j][k] = -D2alpha[j][k] + alpha * (Ric[j][k] + trK * K[j][k] - TWO * val);
            }

        k_kdot = ZERO;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                //k_kdot += kdot[j][k] * Ku[j][k];
                k_kdot += Kdot[j][k] * Ku[j][k];
            }


        beta_term = ZERO;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                for (int l = 0; l < 3; l++) {
                    ELEM_TYPE D2beta = ZERO;

                    D2beta += d2beta[j][k][l];

                    for (int m = 0; m < 3; m++) {
                        D2beta += dG[j][l][k][m] * beta[m] + G[l][k][m] * dbeta[j][m] + G[l][j][m] * dbeta[k][m] - G[m][j][k] * dbeta[m][l];

                        for (int n = 0; n < 3; n++)
                            D2beta += G[l][j][m] * G[m][k][n] * beta[n] - G[m][j][k] * G[l][m][n] * beta[n];
                    }

                    beta_term += -gu[j][k] * D2beta * dalpha[l];
                }
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                beta_term += -beta[k] * Ricm[j][k] * dalpha[j];

        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_20]->data, idx_dc, gu[0][0] + AXIS_VAL(gu[1][1], ZERO));
        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_02]->data, idx_dc, gu[2][2]);
        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_11]->data, idx_dc, TWO * gu[0][2]);
        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_10]->data, idx_dc, -X[0] + AXIS_VAL(ZERO, gu[1][1] / x));
        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_01]->data, idx_dc, -X[2]);
        STORE(solver->diff_coeffs[MG2D_DIFF_COEFF_00]->data, idx_dc, -k2);

        STORE(solver->rhs, idx_rhs, -TWO * alpha * Kij_Dij_alpha + Gammadot_term +
                                    TWO * alpha * (k_kdot + TWO * alpha * k3) + beta_term);

#ifdef ELEM_SCALAR
        if (on_axis) {
            solver->diff_coeffs[MG2D_DIFF_COEFF_20]->boundaries[MG2D_BOUNDARY_0L].val[idx_z] = gu[1][1];
            solver->diff_coeffs[MG2D_DIFF_COEFF_10]->boundaries[MG2D_BOUNDARY_0L].val[idx_z] = gu[1][1];
        }
#endif
    }
}

#undef AXIS_VAL

#undef FUNC
#undef FUNC2
#undef JOIN2

#undef LOAD
#undef STORE

#undef ZERO
#undef ONE
#undef TWO
#undef SIX
#undef EIGHT
#undef TWELVE
#undef C16
#undef C30

#undef HALF
#undef THIRD
#undef C1_144

#undef ELEM_SPLAT
#undef ELEM_SIZE
#undef ELEM_TYPE
#undef TYPE