aboutsummaryrefslogtreecommitdiff
path: root/src/qlm_tetrad.F90
blob: d309906f1b20c16112590dfbfcf54346fedeaaa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"
#include "cctk_Parameters.h"



subroutine qlm_calc_tetrad (CCTK_ARGUMENTS, hn)
  use adm_metric_simple
  use cctk
  use classify
  use matinv
  use pointwise2
  use qlm_boundary
  use qlm_derivs
  use qlm_gram_schmidt
  use qlm_variables
  use ricci4
  use tensor
  use tensor4
  implicit none
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_FUNCTIONS
  DECLARE_CCTK_PARAMETERS
  integer :: hn
  
  CCTK_REAL, parameter :: one=1, two=2
  CCTK_REAL, parameter :: gg4(0:3,0:3,0:3) = 0
  CCTK_REAL    :: gg(3,3), dgg(3,3,3), gg_dot(3,3)
  CCTK_REAL    :: kk(3,3)
  CCTK_REAL    :: g4(0:3,0:3), gu4(0:3,0:3), dg4(0:3,0:3,0:3)
  CCTK_REAL    :: gamma4(0:3,0:3,0:3)
  CCTK_REAL    :: ee(0:3,0:3), ee_p(0:3,1:3), ee_p_p(0:3,1:3)
  CCTK_REAL    :: dee_spher(1:3,1:3,1:3), ee_inv(1:3,1:3)
  CCTK_REAL    :: dee(0:3,0:3,0:3), gee(0:3,0:3,0:3)
  CCTK_REAL    :: m1(0:3), m2(0:3) ! temporary variables to calculate mm
  CCTK_REAL    :: ss(0:3)          ! spacelike outward normal to horizon
  CCTK_REAL    :: tt(0:3)          ! timelike unit normal to hypersurface
  CCTK_REAL    :: ll(0:3)          ! future null vector on the horizon
  CCTK_REAL    :: nn(0:3)          ! future inward null vector
  CCTK_COMPLEX :: mm(0:3)          ! vector on horizon within the hypersurface
  CCTK_REAL    :: gtt(0:3,0:3), gss(0:3,0:3)
  CCTK_REAL    :: gm1(0:3,0:3), gm2(0:3,0:3)
  CCTK_REAL    :: gll(0:3,0:3), gnn(0:3,0:3)
  CCTK_COMPLEX :: gmm(0:3,0:3)
  CCTK_REAL    :: nabla_ll(0:3,0:3), nabla_nn(0:3,0:3)
  CCTK_COMPLEX :: nabla_mm(0:3,0:3)
  
  !CCTK_REAL    :: t0, t1, t2
  !logical      :: ce0, ce1, ce2
  CCTK_REAL    :: delta_space(2)
  
  CCTK_REAL    :: count, accuracy
  
  integer      :: lsh(2)
  integer      :: i, j
  integer      :: a, b, c, d
  CCTK_REAL    :: theta, phi
  
  logical      :: lerr
  
  character*2, parameter :: crlf = achar(13) // achar(10)
  character    :: msg*1000
  
  if (veryverbose/=0) then
     call CCTK_INFO ("Setting tetrad")
  end if
  
  lsh(:) = (/ qlm_ntheta(hn), qlm_nphi(hn) /)
  delta_space(:) = (/ qlm_delta_theta(hn), qlm_delta_phi(hn) /)
  
  count = 0
  accuracy = 0
  
  ! Calculate the coordinates
  do j = 1+qlm_nghostsphi(hn), qlm_nphi(hn)-qlm_nghostsphi(hn)
     do i = 1+qlm_nghoststheta(hn), qlm_ntheta(hn)-qlm_nghoststheta(hn)
        theta = qlm_origin_theta(hn) + (i-1)*qlm_delta_theta(hn)
        phi   = qlm_origin_phi(hn)   + (j-1)*qlm_delta_phi(hn)
        
        ! Get the variables from the arrays
        gg(1,1) = qlm_gxx(i,j)
        gg(1,2) = qlm_gxy(i,j)
        gg(1,3) = qlm_gxz(i,j)
        gg(2,2) = qlm_gyy(i,j)
        gg(2,3) = qlm_gyz(i,j)
        gg(3,3) = qlm_gzz(i,j)
        gg(2,1) = gg(1,2)
        gg(3,1) = gg(1,3)
        gg(3,2) = gg(2,3)
        
        dgg(1,1,1) = qlm_dgxxx(i,j)
        dgg(1,2,1) = qlm_dgxyx(i,j)
        dgg(1,3,1) = qlm_dgxzx(i,j)
        dgg(2,2,1) = qlm_dgyyx(i,j)
        dgg(2,3,1) = qlm_dgyzx(i,j)
        dgg(3,3,1) = qlm_dgzzx(i,j)
        dgg(2,1,1) = dgg(1,2,1)
        dgg(3,1,1) = dgg(1,3,1)
        dgg(3,2,1) = dgg(2,3,1)
        dgg(1,1,2) = qlm_dgxxy(i,j)
        dgg(1,2,2) = qlm_dgxyy(i,j)
        dgg(1,3,2) = qlm_dgxzy(i,j)
        dgg(2,2,2) = qlm_dgyyy(i,j)
        dgg(2,3,2) = qlm_dgyzy(i,j)
        dgg(3,3,2) = qlm_dgzzy(i,j)
        dgg(2,1,2) = dgg(1,2,2)
        dgg(3,1,2) = dgg(1,3,2)
        dgg(3,2,2) = dgg(2,3,2)
        dgg(1,1,3) = qlm_dgxxz(i,j)
        dgg(1,2,3) = qlm_dgxyz(i,j)
        dgg(1,3,3) = qlm_dgxzz(i,j)
        dgg(2,2,3) = qlm_dgyyz(i,j)
        dgg(2,3,3) = qlm_dgyzz(i,j)
        dgg(3,3,3) = qlm_dgzzz(i,j)
        dgg(2,1,3) = dgg(1,2,3)
        dgg(3,1,3) = dgg(1,3,3)
        dgg(3,2,3) = dgg(2,3,3)
        
        kk(1,1) = qlm_kxx(i,j)
        kk(1,2) = qlm_kxy(i,j)
        kk(1,3) = qlm_kxz(i,j)
        kk(2,2) = qlm_kyy(i,j)
        kk(2,3) = qlm_kyz(i,j)
        kk(3,3) = qlm_kzz(i,j)
        kk(2,1) = kk(1,2)
        kk(3,1) = kk(1,3)
        kk(3,2) = kk(2,3)
        
        
        
        ! Calculate 4-metric
        call calc_3metricdot_simple (kk, gg_dot)
        call calc_4metricderivs_simple (gg,dgg,gg_dot, g4,dg4)
        call calc_4inv (g4, gu4)
        call calc_4connections (gu4,dg4, gamma4)
        
        
        
        ! The following must be consistent with qlm_tetrad.F90
        
        ee = TAT_nan()
        dee_spher = TAT_nan()
        dee = TAT_nan()
        
        ee(0,:) = 0
        dee(0,:,:) = 0
        
        
        
        ee(1,0) = 0
        ee(1,1) = qlm_x(i,j,hn) - qlm_origin_x(hn)
        ee(1,2) = qlm_y(i,j,hn) - qlm_origin_y(hn)
        ee(1,3) = qlm_z(i,j,hn) - qlm_origin_z(hn)
        
        !ee_p(1,1) = qlm_x_p(i,j,hn) - qlm_origin_x_p(hn)
        !ee_p(1,2) = qlm_y_p(i,j,hn) - qlm_origin_y_p(hn)
        !ee_p(1,3) = qlm_z_p(i,j,hn) - qlm_origin_z_p(hn)
        
        !ee_p_p(1,1) = qlm_x_p_p(i,j,hn) - qlm_origin_x_p_p(hn)
        !ee_p_p(1,2) = qlm_y_p_p(i,j,hn) - qlm_origin_y_p_p(hn)
        !ee_p_p(1,3) = qlm_z_p_p(i,j,hn) - qlm_origin_z_p_p(hn)
        
        dee(1,0,:) = 0
        !dee(1,1:3,0) = timederiv (ee(1,1:3), ee_p(1,1:3), ee_p_p(1,1:3), t0,t1,t2, ce0,ce1,ce2)
        dee(1,1:3,0) = 0
        dee_spher(1,:,1) = 0    ! this is a choice
        dee_spher(1,1,2:3) = deriv (qlm_x(:,:,hn), i,j, delta_space)
        dee_spher(1,2,2:3) = deriv (qlm_y(:,:,hn), i,j, delta_space)
        dee_spher(1,3,2:3) = deriv (qlm_z(:,:,hn), i,j, delta_space)
        
        
        
        ee(2:3,0) = 0
        ee(2:3,1) = deriv (qlm_x(:,:,hn), i,j, delta_space)
        ee(2:3,2) = deriv (qlm_y(:,:,hn), i,j, delta_space)
        ee(2:3,3) = deriv (qlm_z(:,:,hn), i,j, delta_space)
        
        ee_p(2:3,1) = deriv (qlm_x_p(:,:,hn), i,j, delta_space)
        ee_p(2:3,2) = deriv (qlm_y_p(:,:,hn), i,j, delta_space)
        ee_p(2:3,3) = deriv (qlm_z_p(:,:,hn), i,j, delta_space)
        
        ee_p_p(2:3,1) = deriv (qlm_x_p_p(:,:,hn), i,j, delta_space)
        ee_p_p(2:3,2) = deriv (qlm_y_p_p(:,:,hn), i,j, delta_space)
        ee_p_p(2:3,3) = deriv (qlm_z_p_p(:,:,hn), i,j, delta_space)
        
        dee(2:3,0,:) = 0
        !dee(2:3,1:3,0) = timederiv (ee(2:3,1:3), ee_p(2:3,1:3), ee_p_p(2:3,1:3), t0,t1,t2, ce0,ce1,ce2)
        dee(2:3,1:3,0) = 0
        dee_spher(2:3,:,1) = 0  ! this is a choice
        dee_spher(2:3,1,2:3) = deriv2 (qlm_x(:,:,hn), i,j, delta_space)
        dee_spher(2:3,2,2:3) = deriv2 (qlm_y(:,:,hn), i,j, delta_space)
        dee_spher(2:3,3,2:3) = deriv2 (qlm_z(:,:,hn), i,j, delta_space)
        
        ! ee_a^i
        ! dee_spher_a^i,b
        ! dee_a^i,j = ee_j^b dee_spher_a^i,b
        call calc_inv3 (ee(1:3,1:3), ee_inv, lerr)
        if (lerr) then
           call CCTK_WARN (3, "Could not invert matrix")
        end if
        do a=1,3
           do b=1,3
              do c=1,3
                 dee(a,b,c) = 0
                 do d=1,3
                    dee(a,b,c) = dee(a,b,c) + ee_inv(c,d) * dee_spher(a,b,d)
                 end do
              end do
           end do
        end do
        
        do a=0,3
           do b=0,3
              gee(:,a,b) = dee(:,a,b) 
              do c=0,3
                 gee(:,a,b) = gee(:,a,b) + ee(:,c) * gamma4(a,c,b)
              end do
           end do
        end do
        
        
        
        ! tt
        tt(:) = ee(0,:)
        gtt(:,:) = gee(0,:,:)
        
        ! m1 = ep
        m1(:) = ee(3,:)
        gm1(:,:) = gee(3,:,:)
        call gram_schmidt_normalise (g4,gg4, m1,gm1, one)
        
        ! m2 = et
        m2(:) = ee(2,:)
        gm2(:,:) = gee(2,:,:)
        call gram_schmidt_project (g4,gg4, m1,gm1, one, m2,gm2)
        call gram_schmidt_normalise (g4,gg4, m2,gm2, one)
        
        ! ss = er
        ss(:) = ee(1,:)
        gss(:,:) = gee(1,:,:)
        call gram_schmidt_project (g4,gg4, m1,gm1, one, ss,gss)
        call gram_schmidt_project (g4,gg4, m2,gm2, one, ss,gss)
        call gram_schmidt_normalise (g4,gg4, ss,gss, one)
        
        
        
        ! ll = (tt + ss) / sqrt(two)
        ll = (tt + ss) / sqrt(two)
        gll = (gtt + gss) / sqrt(two)
        
        ! nn = (tt - ss) / sqrt(two)
        nn = (tt - ss) / sqrt(two)
        gnn = (gtt - gss) / sqrt(two)
        
        ! mm = cmplx(m1, m2, kind(mm)) / sqrt(two)
        mm = cmplx(m1, m2, kind(mm)) / sqrt(two)
        gmm = cmplx(gm1, gm2, kind(gmm)) / sqrt(two)
        
        
        
        ! Store the stuff into the arrays
        do a=0,3
           do b=0,3
              nabla_ll(a,b) = 0
              nabla_nn(a,b) = 0
              nabla_mm(a,b) = 0
              do c=0,3
                 nabla_ll(a,b) = nabla_ll(a,b) + g4(a,c) * gll(c,b)
                 nabla_nn(a,b) = nabla_nn(a,b) + g4(a,c) * gnn(c,b)
                 nabla_mm(a,b) = nabla_mm(a,b) + g4(a,c) * gmm(c,b)
              end do
              qlm_tetrad_derivs(i,j)%nabla_ll(a,b) = nabla_ll(a,b)
              qlm_tetrad_derivs(i,j)%nabla_nn(a,b) = nabla_nn(a,b)
              qlm_tetrad_derivs(i,j)%nabla_mm(a,b) = nabla_mm(a,b)
           end do
        end do
        
        qlm_l0(i,j,hn) = ll(0)
        qlm_l1(i,j,hn) = ll(1)
        qlm_l2(i,j,hn) = ll(2)
        qlm_l3(i,j,hn) = ll(3)
        
        qlm_n0(i,j,hn) = nn(0)
        qlm_n1(i,j,hn) = nn(1)
        qlm_n2(i,j,hn) = nn(2)
        qlm_n3(i,j,hn) = nn(3)
        
        qlm_m0(i,j,hn) = mm(0)
        qlm_m1(i,j,hn) = mm(1)
        qlm_m2(i,j,hn) = mm(2)
        qlm_m3(i,j,hn) = mm(3)
        
     end do
  end do
  
  if (count > 0) then
     accuracy = sqrt(accuracy / count)
  end if
  
  if (veryverbose/=0) then
     write (msg, '("Tetrad accuracy L2 norm: ",g12.4)') accuracy
     call CCTK_INFO (msg)
  end if
  
!!$  if (accuracy > 1.0d-12) then
  if (accuracy > 1.0d-8) then
     call CCTK_WARN (1, "Tetrad is not accurate")
  end if
  
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_l0(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_l1(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_l2(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_l3(:,:,hn), +1)
  
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_n0(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_n1(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_n2(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_n3(:,:,hn), +1)
  
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_m0(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_m1(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_m2(:,:,hn), +1)
  call set_boundary (CCTK_PASS_FTOF, hn, qlm_m3(:,:,hn), +1)
  
end subroutine qlm_calc_tetrad