aboutsummaryrefslogtreecommitdiff
path: root/src/qlm_analyse.F90
blob: 415fa884c2d661692c00e9584b4d43491b6e6c06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"
#include "cctk_Parameters.h"



subroutine qlm_analyse (CCTK_ARGUMENTS, hn)
  use adm_metric_simple
  use cctk
  use constants
  use qlm_derivs
  use qlm_variables
  use tensor
  use tensor2
  implicit none
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_FUNCTIONS
  DECLARE_CCTK_PARAMETERS
  integer :: hn
  
  CCTK_REAL, parameter :: zero=0, two=2
  integer,   parameter :: rk = kind(zero)
  
  CCTK_REAL    :: theta, phi
  CCTK_REAL    :: ll(0:3), nn(0:3)
  CCTK_COMPLEX :: mm(0:3)
  CCTK_REAL    :: ss(0:3), tt(0:3)
  CCTK_COMPLEX :: npalpha, npbeta
  CCTK_REAL    :: gg(3,3), dgg(3,3,3), kk(3,3), gg_dot(3,3)
  CCTK_REAL    :: g4(0:3,0:3), dg4(0:3,0:3,0:3)
  CCTK_REAL    :: h4(0:3,0:3), dh4(0:3,0:3,0:3)
  CCTK_REAL    :: dtg, gu(3,3), trk, dgu(3,3,3)
  CCTK_REAL    :: xx(3), ee(3,2)
  CCTK_REAL    :: xi(2), xi1(3)
  CCTK_REAL    :: qq(2,2), dtq
  CCTK_REAL    :: adm_energy, adm_mom(3), adm_amom(3)
  CCTK_REAL    :: ll_energy, ll_mom(3), ll_amom(3,3)
  CCTK_COMPLEX :: ev
  CCTK_REAL    :: spin
  CCTK_REAL    :: npspin
  CCTK_REAL    :: wsspin
  CCTK_REAL    :: tx, ty, tz
  CCTK_REAL    :: xi1_x(3), xi1_y(3), xi1_z(3)
  CCTK_REAL    :: coordspinx, coordspiny, coordspinz
  
  CCTK_REAL    :: delta_space(2)
  
  CCTK_REAL, allocatable  :: weights(:)
  CCTK_REAL               :: sum1

  integer   :: ntheta_inner, nphi_inner

  integer   :: i_eq, j_p0, j_p2
  
  integer   :: i, j, l, m
  integer   :: a, b, c
  
  character :: msg*1000
  
  if (veryverbose/=0) then
     call CCTK_INFO ("Calculating spin")
  end if
  
  delta_space(:) = (/ qlm_delta_theta(hn), qlm_delta_phi(hn) /)
  
  ! Equatorial circumference
  i_eq = (qlm_ntheta(hn) + 1) / 2
  
  ! Polar circumference at phi=0
  j_p0 = 1+qlm_nghostsphi(hn)
  
  ! Polar circumference at phi=pi/2
  j_p2 = 1+qlm_nghostsphi(hn) + (qlm_nphi(hn) - 2*qlm_nghostsphi(hn) - 1) / 4
  
  
  
  ! Initial values
  qlm_equatorial_circumference(hn) = 0
  qlm_polar_circumference_0(hn) = 0
  qlm_polar_circumference_pi_2(hn) = 0
  qlm_area(hn) = 0
  qlm_spin(hn) = 0
  qlm_cvspin(hn) = 0
  qlm_npspin(hn) = 0
  qlm_wsspin(hn) = 0
  qlm_coordspinx(hn) = 0
  qlm_coordspiny(hn) = 0
  qlm_coordspinz(hn) = 0
  
  qlm_adm_energy(hn) = 0
  qlm_adm_momentum_x(hn) = 0
  qlm_adm_momentum_y(hn) = 0
  qlm_adm_momentum_z(hn) = 0
  qlm_adm_angular_momentum_x(hn) = 0
  qlm_adm_angular_momentum_y(hn) = 0
  qlm_adm_angular_momentum_z(hn) = 0

  qlm_ll_energy(hn) = 0
  qlm_ll_momentum_x(hn) = 0
  qlm_ll_momentum_y(hn) = 0
  qlm_ll_momentum_z(hn) = 0
  qlm_ll_angular_momentum_x(hn) = 0
  qlm_ll_angular_momentum_y(hn) = 0
  qlm_ll_angular_momentum_z(hn) = 0

  ! Compute weights for spherical integration (see Driscoll and Healy).
  ! These are the correct weights in a Gauss-Legendre-Senc.
  ! Also compare qlm_area with AHFinderDirect's area, they are in much
  ! better agreement than with the previous method using
  ! delta_theta*delta_phi.
  
  ntheta_inner = qlm_ntheta(hn) - 2*qlm_nghoststheta(hn)
  nphi_inner   = qlm_nphi(hn) - 2*qlm_nghostsphi(hn)
  
  allocate (weights(1+qlm_nghoststheta(hn) : qlm_ntheta(hn)-qlm_nghoststheta(hn)))
  
  do i = 1+qlm_nghoststheta(hn), qlm_ntheta(hn)-qlm_nghoststheta(hn)
     theta = qlm_origin_theta(hn) + (i-1)*qlm_delta_theta(hn)
     sum1 = 0
     do l = 0, (ntheta_inner-1)/2
        sum1 = sum1 + sin((2*l+1)*theta)/(2*l+1)
     end do
     weights(i) = 8*pi * sum1 / (nphi_inner * ntheta_inner)
  end do
  
  do j = 1+qlm_nghostsphi(hn), qlm_nphi(hn)-qlm_nghostsphi(hn)
     do i = 1+qlm_nghoststheta(hn), qlm_ntheta(hn)-qlm_nghoststheta(hn)
        
        theta = qlm_origin_theta(hn) + (i-1)*qlm_delta_theta(hn)
        phi   = qlm_origin_phi(hn)   + (j-1)*qlm_delta_phi(hn)
        
        ! 2-metric on the horizon
        qq(1,1) = qlm_qtt(i,j,hn)
        qq(1,2) = qlm_qtp(i,j,hn)
        qq(2,2) = qlm_qpp(i,j,hn)
        qq(2,1) = qq(1,2)
        call calc_2det (qq, dtq)
        
        ll(0) = qlm_l0(i,j,hn)
        ll(1) = qlm_l1(i,j,hn)
        ll(2) = qlm_l2(i,j,hn)
        ll(3) = qlm_l3(i,j,hn)
        
        nn(0) = qlm_n0(i,j,hn)
        nn(1) = qlm_n1(i,j,hn)
        nn(2) = qlm_n2(i,j,hn)
        nn(3) = qlm_n3(i,j,hn)
        
        mm(0) = qlm_m0(i,j,hn)
        mm(1) = qlm_m1(i,j,hn)
        mm(2) = qlm_m2(i,j,hn)
        mm(3) = qlm_m3(i,j,hn)
        
        tt = (ll + nn) / sqrt(two)
        ss = (ll - nn) / sqrt(two)
        
        npalpha = qlm_npalpha(i,j,hn)
        npbeta  = qlm_npbeta(i,j,hn)
        
        gg(1,1) = qlm_gxx(i,j)
        gg(1,2) = qlm_gxy(i,j)
        gg(1,3) = qlm_gxz(i,j)
        gg(2,2) = qlm_gyy(i,j)
        gg(2,3) = qlm_gyz(i,j)
        gg(3,3) = qlm_gzz(i,j)
        gg(2,1) = gg(1,2)
        gg(3,1) = gg(1,3)
        gg(3,2) = gg(2,3)
        
        dgg(1,1,1) = qlm_dgxxx(i,j)
        dgg(1,2,1) = qlm_dgxyx(i,j)
        dgg(1,3,1) = qlm_dgxzx(i,j)
        dgg(2,2,1) = qlm_dgyyx(i,j)
        dgg(2,3,1) = qlm_dgyzx(i,j)
        dgg(3,3,1) = qlm_dgzzx(i,j)
        dgg(2,1,1) = dgg(1,2,1)
        dgg(3,1,1) = dgg(1,3,1)
        dgg(3,2,1) = dgg(2,3,1)
        dgg(1,1,2) = qlm_dgxxy(i,j)
        dgg(1,2,2) = qlm_dgxyy(i,j)
        dgg(1,3,2) = qlm_dgxzy(i,j)
        dgg(2,2,2) = qlm_dgyyy(i,j)
        dgg(2,3,2) = qlm_dgyzy(i,j)
        dgg(3,3,2) = qlm_dgzzy(i,j)
        dgg(2,1,2) = dgg(1,2,2)
        dgg(3,1,2) = dgg(1,3,2)
        dgg(3,2,2) = dgg(2,3,2)
        dgg(1,1,3) = qlm_dgxxz(i,j)
        dgg(1,2,3) = qlm_dgxyz(i,j)
        dgg(1,3,3) = qlm_dgxzz(i,j)
        dgg(2,2,3) = qlm_dgyyz(i,j)
        dgg(2,3,3) = qlm_dgyzz(i,j)
        dgg(3,3,3) = qlm_dgzzz(i,j)
        dgg(2,1,3) = dgg(1,2,3)
        dgg(3,1,3) = dgg(1,3,3)
        dgg(3,2,3) = dgg(2,3,3)
        
        kk(1,1) = qlm_kxx(i,j)
        kk(1,2) = qlm_kxy(i,j)
        kk(1,3) = qlm_kxz(i,j)
        kk(2,2) = qlm_kyy(i,j)
        kk(2,3) = qlm_kyz(i,j)
        kk(3,3) = qlm_kzz(i,j)
        kk(2,1) = kk(1,2)
        kk(3,1) = kk(1,3)
        kk(3,2) = kk(2,3)
        
        
        
        call calc_det (gg, dtg)
        call calc_inv (gg, dtg, gu)
        call calc_trace (gu, kk, trk)
        
        ! Calculate time derivatives
        call calc_3metricdot_simple (kk, gg_dot)
        
        ! Calculate 4-metric
        call calc_4metricderivs_simple (gg, dgg, gg_dot, g4,dg4)

        ! Calculate derivative of 4-metric inverse
        call calc_invderiv (gu, dgg, dgu)
        
        ! "Perturbative" 4-metric
        h4 = g4 - eta4
        dh4 = dg4
        
        xx(1) = qlm_x(i,j,hn)
        xx(2) = qlm_y(i,j,hn)
        xx(3) = qlm_z(i,j,hn)
        
        ee(1,1:2) = deriv (qlm_x(:,:,hn), i, j, delta_space)
        ee(2,1:2) = deriv (qlm_y(:,:,hn), i, j, delta_space)
        ee(3,1:2) = deriv (qlm_z(:,:,hn), i, j, delta_space)
        
        xi(1) = qlm_xi_t(i,j,hn)
        xi(2) = qlm_xi_p(i,j,hn)
        
        if (i == i_eq) then
           qlm_equatorial_circumference(hn) = qlm_equatorial_circumference(hn) &
                + sqrt(qq(2,2)) * qlm_delta_phi(hn)
        end if
        
        if (j == j_p0) then
           qlm_polar_circumference_0(hn) = qlm_polar_circumference_0(hn) &
                + sqrt(qq(1,1)) * qlm_delta_theta(hn)
        end if
        
        if (j == j_p2) then
           qlm_polar_circumference_pi_2(hn) = qlm_polar_circumference_pi_2(hn) &
                + sqrt(qq(1,1)) * qlm_delta_theta(hn)
        end if
        
        qlm_area(hn) = qlm_area(hn) &
             + sqrt(dtq) * weights(i)
        
        ! s^i: outward spacelike normal
        ! K_ij: extrinsic curvature
        ! phi^i: rotational Killing vector
        
        do a=1,3
           xi1(a) = 0
           do b=1,2
              xi1(a) = xi1(a) + ee(a,b) * xi(b)
           end do
        end do
        
        ! phi^i omega_i = - phi^i s^j K_ij
        
        spin = 0
        do a=1,3
           do b=1,3
              spin = spin + xi1(a) * ss(b) * kk(a,b)
           end do
        end do
        
        ! phi^i omega_i = (alpha + ~beta) phi^i m_i + complex conjugate
        npspin = 0
        do a=1,3
           do b=1,3
              npspin = npspin + 2 * real((npalpha + conjg(npbeta)) * xi1(a) * gg(a,b) * mm(b))
           end do
        end do
        
        ! phi^i omega_i = 1/2 f Im Psi_2
        ! (or is it   phi^i omega_i = - f Im Psi_2   ?)
        wsspin = - qlm_inv_z(i,j,hn) * aimag(qlm_psi2(i,j,hn))
        
        ! x = sin theta cos phi
        ! y = sin theta sin phi
        ! z = cos theta
        ! xi_x = (0,-z,y)
        ! xi_y = (z,0,-x)
        ! xi_z = (-y,x,0)
        tx = qlm_x(i,j,hn) - qlm_origin_x(hn)
        ty = qlm_y(i,j,hn) - qlm_origin_y(hn)
        tz = qlm_z(i,j,hn) - qlm_origin_z(hn)
        xi1_x(:) = (/ zero, -tz, ty /)
        xi1_y(:) = (/ tz, zero, -tx /)
        xi1_z(:) = (/ -ty, tx, zero /)
        coordspinx = 0
        coordspiny = 0
        coordspinz = 0
        do a=1,3
           do b=1,3
              coordspinx = coordspinx + xi1_x(a) * ss(b) * kk(a,b)
              coordspiny = coordspiny + xi1_y(a) * ss(b) * kk(a,b)
              coordspinz = coordspinz + xi1_z(a) * ss(b) * kk(a,b)
           end do
        end do
        
        xi1_x(:) = (/ 1, 0, 0 /)
        xi1_y(:) = (/ 0, 1, 0 /)
        xi1_z(:) = (/ 0, 0, 1 /)
        
        qlm_spin(hn) = qlm_spin(hn) &
             + spin * sqrt(dtq) * weights(i)

        qlm_npspin(hn) = qlm_npspin(hn) &
             + npspin * sqrt(dtq) * weights(i)
        
        qlm_wsspin(hn) = qlm_wsspin(hn) &
             + wsspin * sqrt(dtq) * weights(i)
        
        qlm_coordspinx(hn) = qlm_coordspinx(hn) &
             + coordspinx * sqrt(dtq) * weights(i)
        qlm_coordspiny(hn) = qlm_coordspiny(hn) &
             + coordspiny * sqrt(dtq) * weights(i)
        qlm_coordspinz(hn) = qlm_coordspinz(hn) &
             + coordspinz * sqrt(dtq) * weights(i)
        
        ! ADM quantities
        ! Alcubierre, Appendix A, p. 402 ff, eqns. (A.5) - (A.7):
        
        ! ADM energy
        ! E_adm = (1/16 pi) int_S(r) [delta^jk h_ik,j - (trace(h)),i] n^i r^2 dOmega
        adm_energy = 0
        do a=1,3
           do b=1,3
              do c=1,3
                 adm_energy = adm_energy + (delta3(a,b) * dh4(a,c,b) &
             & - gu(a,b) * dh4(a,b,c) - h4(a,b) * dgu(a,b,c) ) * ss(c)
              end do
           end do
        end do
        qlm_adm_energy(hn) = qlm_adm_energy(hn) &
             & + adm_energy / (16*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        
        ! ADM momentum
        ! P_adm^i = (1/8 pi) int_S(r) [K^i_j - K delta^i_j] n^j r^2 dOmega
        do a=1,3
           adm_mom(a) = 0
           do b=1,3
              do c=1,3
                 adm_mom(a) = adm_mom(a) &
             &        + gu(a,c) * kk(c,b) * ss(b) 
              end do
              adm_mom(a) = adm_mom(a) &
                   + delta3(a,b) * trk * ss(b) 
           end do
        end do
        qlm_adm_momentum_x(hn) = qlm_adm_momentum_x(hn) &
             & + adm_mom(1) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        qlm_adm_momentum_y(hn) = qlm_adm_momentum_y(hn) &
             & + adm_mom(2) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        qlm_adm_momentum_z(hn) = qlm_adm_momentum_z(hn) &
             & + adm_mom(3) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        
        ! ADM angular momentum
        ! J_adm^i = (1/8 pi) int_S(r)
        !   epsilon^ijk x_j (K_kl - delta_kl K) * n^l dS 
        do a=1,3
           adm_amom(a) = 0
           do b=1,3
              do c=1,3
                 do l=1,3
                    do m=1,3
                       adm_amom(a) = adm_amom(a)  &
                &         + epsilon3(a,b,c) * xx(b) * gu(c,m) * kk(m,l) * ss(l)
                    end do
                    adm_amom(a) = adm_amom(a)  &
                &    - epsilon3(a,b,c) * xx(b) *  delta3(c,l) * trk * ss(l)
                 end do
              end do
           end do
        end do
        qlm_adm_angular_momentum_x(hn) = qlm_adm_angular_momentum_x(hn) &
             & + adm_amom(1) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        qlm_adm_angular_momentum_y(hn) = qlm_adm_angular_momentum_y(hn) &
             & + adm_amom(2) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)
        qlm_adm_angular_momentum_z(hn) = qlm_adm_angular_momentum_z(hn) &
             & + adm_amom(3) / (8*pi) &
             &   * sqrt(dtq) * qlm_delta_theta(hn) * qlm_delta_phi(hn)

        ! Landau-Lifshitz quantities
        ! Weinberg, chapter 7.6, pp. 165 ff, eqns. (7.6.22) - (7.6.24):
        
        ! Landau-Lifshitz energy
        ! E_ll = (-1/16 pi) int_S(r) [h_jj,i - hij,j] n_i r^2 dOmega
        ll_energy = 0
        do a=1,3
           do b=1,3
              ll_energy = ll_energy + (dh4(b,b,a) - dh4(a,b,b)) * ss(a)
           end do
        end do
        qlm_ll_energy(hn) = qlm_ll_energy(hn) &
             & + ll_energy / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        
        ! Landau-Lifshitz momentum
        ! P_ll^j = (-1/16 pi) int_S(r)
        !    [- h_kk,0 delta_ij + h_k0,k delta_ij
        !     - h_j0,i + h_ij,0                  ] n_i r^2 dOmega
        ! 
        ! P_ll^j = (1/8 pi) int_S(r) [K_ij - K delta_ij] n_i r^2 dOmega
        do a=1,3
           ll_mom(a) = 0
           do b=1,3
              ll_mom(a) = ll_mom(a) &
                   + (- dh4(b,b,0) + dh4(b,0,b)) * ss(a) &
                   + (- dh4(a,0,b) + dh4(b,a,0)) * ss(b)
           end do
        end do
        qlm_ll_momentum_x(hn) = qlm_ll_momentum_x(hn) &
             & + ll_mom(1) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        qlm_ll_momentum_y(hn) = qlm_ll_momentum_y(hn) &
             & + ll_mom(2) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        qlm_ll_momentum_z(hn) = qlm_ll_momentum_z(hn) &
             & + ll_mom(3) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        
        ! Landau-Lifshitz angular momentum
        ! J_ll^jk = (-1/16 pi) int_S(r)
        !    [- x_j h_0k,i + x_k h_0j,i
        !     + x_j h_ki,0 - x_k h_ji,0
        !     + h_0k delta_ij - h_0j delta_ik] n_i r^2 dOmega
        do a=1,3
           do b=1,3
              ll_amom(a,b) = 0
              do c=1,3
                 ll_amom(a,b) = ll_amom(a,b) + ss(c) * ( &
                      + (- xx(a) * dh4(0,b,c) + xx(b) * dh4(0,a,c)) &
                      + (+ xx(a) * dh4(b,c,0) - xx(b) * dh4(a,c,0)) &
                      + (h4(0,b) * delta4(c,a) - h4(0,a) * delta4(c,b)))
              end do
           end do
        end do
        qlm_ll_angular_momentum_x(hn) = qlm_ll_angular_momentum_x(hn) &
             & + ll_amom(2,3) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        qlm_ll_angular_momentum_y(hn) = qlm_ll_angular_momentum_y(hn) &
             & + ll_amom(3,1) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        qlm_ll_angular_momentum_z(hn) = qlm_ll_angular_momentum_z(hn) &
             & + ll_amom(1,2) / (-16*pi) &
             &   * sqrt(dtq) * weights(i)
        
     end do
  end do
  
  deallocate(weights)
  
  qlm_polar_circumference_0(hn) = qlm_polar_circumference_0(hn) * 2
  qlm_polar_circumference_pi_2(hn) = qlm_polar_circumference_pi_2(hn) * 2
  
  ! A = 4 pi R^2
  ! R = 2 M
  qlm_radius(hn) = sqrt(qlm_area(hn) / (4*pi))
  qlm_irreducible_mass(hn) = qlm_radius(hn) / 2
  
  qlm_spin(hn) = qlm_spin(hn) / (8*pi)
  qlm_mass(hn) = 1/(2*qlm_radius(hn)) * sqrt(qlm_radius(hn)**4 + 4*qlm_spin(hn)**2)
  qlm_cvspin(hn) = qlm_cvspin(hn) / (8*pi)
  qlm_npspin(hn) = qlm_npspin(hn) / (-8*pi)
  qlm_wsspin(hn) = qlm_wsspin(hn) / (-4*pi)
  qlm_coordspinx(hn) = qlm_coordspinx(hn) / (8*pi)
  qlm_coordspiny(hn) = qlm_coordspiny(hn) / (8*pi)
  qlm_coordspinz(hn) = qlm_coordspinz(hn) / (8*pi)
  
  ! The event horizon is at r = M + sqrt (M^2 - a^2)
  ! with x^2 + y^2 + z^2 = rho^2 = r^2 + a^2 (1 - z^2 / r^2)
  
  call guess_mass_spin &
       (qlm_area(hn), qlm_equatorial_circumference(hn), qlm_mass_guess(hn), qlm_spin_guess(hn))
  
  
  
  if (verbose/=0) then
     
     write (msg, '("Geometric quantities for surface ",i4,":")') hn-1
     call CCTK_INFO (msg)
     write (msg, '("   Area A:                       ",g16.6)') qlm_area(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Irreducible mass M = R/2:     ",g16.6)') qlm_irreducible_mass(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Areal radius R = sqrt(A/4pi): ",g16.6)') qlm_radius(hn)
     call CCTK_INFO (msg)
     
     write (msg, '("Coordinate-dependent quantities for surface ",i4,":")') hn-1
     call CCTK_INFO (msg)
     write (msg, '("   Equatorial circumference:        ",g16.6)') &
          qlm_equatorial_circumference(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Polar circumference at phi=0:    ",g16.6)') &
          qlm_polar_circumference_0(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Polar circumference at phi=pi/2: ",g16.6)') &
          qlm_polar_circumference_pi_2(hn)
     call CCTK_INFO (msg)
     if (qlm_spin_guess(hn) >= 0) then
        write (msg, '("   Spin guess J from distortion:    ",g16.6)') &
             qlm_spin_guess(hn)
        call CCTK_INFO (msg)
     else
        call CCTK_INFO ("   No valid spin guess from distortion.")
        call CCTK_INFO ("   (Spin guess is imaginary.)")
        write (msg, '("   Magnitude of invalid spin guess: ",g16.6)') &
             abs(qlm_spin_guess(hn))
        call CCTK_INFO (msg)
     end if
     write (msg, '("   Mass guess M from distortion:    ",g16.6)') &
          qlm_mass_guess(hn)
     call CCTK_INFO (msg)
     
     write (msg, '("Isolated Horizon quantities for surface ",i4,":")') hn-1
     call CCTK_INFO (msg)
     ev = cmplx(qlm_killing_eigenvalue_re(hn), qlm_killing_eigenvalue_im(hn),rk)
     write (msg, '("   Killing vector field eigenvalue norm:   ",g14.6)') abs(ev)
     call CCTK_INFO (msg)
     write (msg, '("   Spin J:                                 ",g14.6)') qlm_spin(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Kerr spin parameter a = J/M:            ",g14.6)') qlm_spin(hn) / qlm_mass(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Dimensionless spin parameter a = J/M^2: ",g14.6)') qlm_spin(hn) / qlm_mass(hn)**2
     call CCTK_INFO (msg)
     write (msg, '("   Spin J from NP:                         ",g14.6)') qlm_npspin(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Spin J from phi-coordinate-vector:      ",g14.6)') qlm_cvspin(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Mass M:                                 ",g14.6)') qlm_mass(hn)
     call CCTK_INFO (msg)
     
     write (msg, '("Global quantities for surface ",i4,":")') hn-1
     call CCTK_INFO (msg)
     write (msg, '("   ADM energy:             ",g16.6)') qlm_adm_energy(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM momentum x:         ",g16.6)') qlm_adm_momentum_x(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM momentum y:         ",g16.6)') qlm_adm_momentum_y(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM momentum z:         ",g16.6)') qlm_adm_momentum_z(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM angular momentum x: ",g16.6)') qlm_adm_angular_momentum_x(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM angular momentum y: ",g16.6)') qlm_adm_angular_momentum_y(hn)
     call CCTK_INFO (msg)
     write (msg, '("   ADM angular momentum z: ",g16.6)') qlm_adm_angular_momentum_z(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz energy:             ",g16.6)') qlm_ll_energy(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz momentum x:         ",g16.6)') qlm_ll_momentum_x(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz momentum y:         ",g16.6)') qlm_ll_momentum_y(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz momentum z:         ",g16.6)') qlm_ll_momentum_z(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz angular momentum x: ",g16.6)') qlm_ll_angular_momentum_x(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz angular momentum y: ",g16.6)') qlm_ll_angular_momentum_y(hn)
     call CCTK_INFO (msg)
     write (msg, '("   Landau-Lifshitz angular momentum z: ",g16.6)') qlm_ll_angular_momentum_z(hn)
     call CCTK_INFO (msg)
     
  end if
  
contains
  
  subroutine guess_mass_spin (area, circumference, mass, spin)
    CCTK_REAL, intent(in)  :: area, circumference
    CCTK_REAL, intent(out) :: mass, spin
    CCTK_REAL :: radius, amom2, amom
    
    ! equatorial circumference L, area A
    
    ! L = 2 pi (r^2 + a^2) / r
    ! A = 4 pi (r^2 + a^2)
    ! r = M + sqrt (M^2 - a^2)
    
    ! r = A / (2 L)
    ! a^2 = A / (4 pi) - r^2   ("spin" a = J/M = specific angular momentum)
    ! M = (r^2 + a^2) / (2 r)
    
    ! J = a M   (angular momentum)
    
    radius = area / (2*circumference)
    amom2 = area / (4*pi) - radius**2
    amom = sign(sqrt(abs(amom2)), amom2)
    mass = (radius**2 + amom2) / (2*radius)
    spin = amom * mass
    
    ! equatorial circumference L, area A
    ! mass M, areal radius R, spin a = J/M^2
    
    ! A = 4 pi R^2
    ! L = 4 pi M
    
    ! a^2 = (R/M)^2 - 1/4 (R/M)^4
    ! J = a M^2
    
  end subroutine guess_mass_spin
  
end subroutine qlm_analyse