aboutsummaryrefslogtreecommitdiff
path: root/src/Operator.c
blob: 0ae230d0c24f532a2cfd59379d65e0c09eed2a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
 /*@@
   @file      Operator.c
   @date      Tue Apr 15 18:22:45 1997
   @author    Paul Walker
   @desc
              Definition of interpolation operators for regular uniform grids.
   @enddesc

   @history
   @date      Sun Jul 04 1999
   @author    Thomas Radke
   @hdesc     conversion to Cactus 4.0 (copied from pughGetPoints.c)
   @date      Wed 31 Jan 2001
   @author    Thomas Radke
   @hdesc     translation of fortran interpolators into C
   @endhistory
   @version   $Id$
 @@*/

#include <stdlib.h>
#include <string.h>
#include <math.h>    /* floor(3) */

#include "cctk.h"
#include "CactusPUGH/PUGH/src/include/pugh.h"
#include "pughInterpGH.h"

/* the rcs ID and its dummy function to use it */
static const char *rcsid = "$Header$";
CCTK_FILEVERSION(CactusPUGH_PUGHInterp_Operator_c)

/* uncomment this to get some debugging output */
/* #define PUGHINTERP_DEBUG 1 */

/* macro do sort interpolation results from a single communication buffer
   into their appropriate output arrays */
#define SORT_TYPED_ARRAY(cctk_type)                                           \
        {                                                                     \
          int _i;                                                             \
          cctk_type *_src, *_dst;                                             \
                                                                              \
                                                                              \
          _src = (cctk_type *) this->buf;                                     \
          _dst = (cctk_type *) output_arrays[array];                          \
          for (_i = 0; _i < myGH->N_points_from[proc]; _i++)                  \
          {                                                                   \
            _dst[myGH->indices[_i + offset]] = *_src++;                       \
          }                                                                   \
          this->buf = (char *) _src;                                          \
        }


#ifdef CCTK_MPI
/* internal structure describing a handle for a single CCTK data type */
typedef struct
{
  int vtypesize;          /* variable type's size in bytes */
  MPI_Datatype mpitype;   /* corresponding MPI datatype */
  int N_arrays;           /* number of in/out arrays */
  void *sendbuf;          /* communication send buffer for this type */
  void *recvbuf;          /* communication receive buffer for this type */
  char *buf;              /* work pointer for sendbuf */
} type_desc_t;
#endif


/* prototypes of routines defined in this source file */
static int CheckArguments (const cGH *GH,
                           int N_dims,
                           int N_points,
                           int N_input_arrays,
                           int N_output_arrays,
                           const int interp_coord_array_types[]);
static int CheckOutOfBounds (const cGH *GH, const char *coord_system_name,
                             int order, int N_dims, int N_points,
                             const int *dims, const CCTK_REAL *const *coords);
#ifdef CCTK_MPI
static int GetLocalCoords (const cGH *GH,
                           int N_points,
                           const char *coord_system_name,
                           const pGExtras *extras,
                           const CCTK_REAL *coords[],
                           int *N_local_points,
                           CCTK_REAL **local_coords);
#endif


/*@@
  @routine    PUGHInterp_InterpGV
  @date       Sun Jul 04 1999
  @author     Thomas Radke
  @desc
              The interpolation operator registered with the CCTK
              under the name "regular uniform cartesian".

              Interpolates a list of CCTK variables (domain-decomposed
              grid functions or arrays) to a list of output arrays
              (one-to-one) at a given number of interpolation points
              (indicated by their coordinates). The points are located
              on a coordinate system which is assumed to be a uniform
              cartesian.
  @enddesc

  @var        GH
  @vdesc      Pointer to CCTK grid hierarchy
  @vtype      cGH *
  @vio        in
  @endvar
  @var        order
  @vdesc      interpolation order
  @vtype      int
  @vio        in
  @endvar
  @var        coord_system_name
  @vdesc      name of coordinate system to use for interpolation
  @vtype      const char *
  @vio        in
  @endvar
  @var        N_points
  @vdesc      number of points to be interpolated on this processor
  @vtype      int
  @vio        in
  @endvar
  @var        N_input_arrays
  @vdesc      number of input arrays (given by their indices)
              to interpolate from
  @vtype      int
  @vio        in
  @endvar
  @var        N_output_arrays
  @vdesc      number of output arrays to interpolate to
  @vtype      int
  @vio        in
  @endvar
  @var        interp_coord_arrays
  @vdesc      coordinates of points to interpolate at
  @vtype      void *const [N_dims]
  @vio        in
  @endvar
  @var        interp_coord_array_types
  @vdesc      CCTK data type of coordinate arrays
  @vtype      int [N_dims]
  @vio        in
  @endvar
  @var        input_arrays
  @vdesc      list of input arrays to interpolate on
  @vtype      void *[N_input_arrays]
  @vio        in
  @endvar
  @var        input_array_types
  @vdesc      CCTK data types of input arrays
  @vtype      int [N_input_arrays]
  @vio        in
  @endvar
  @var        output_arrays
  @vdesc      list of output arrays to interpolate to
  @vtype      void *const [N_output_arrays]
  @vio        out
  @endvar
  @var        output_array_types
  @vdesc      CCTK data types of output arrays
  @vtype      int [N_output_arrays]
  @vio        in
  @endvar

  @returntype int
  @returndesc
              0  - successful interpolation
              -1 - in case of any errors
  @endreturndesc
@@*/
int PUGHInterp_InterpGV (cGH *GH,
                         int order,
                         const char *coord_system_name,
                         int N_points,
                         int N_input_arrays,
                         int N_output_arrays,
                         const void *const interp_coord_arrays[],
                         const int interp_coord_array_types[],
                         const int input_array_indices[],
                         void *const output_arrays[],
                         const int output_array_types[])
{
  int i, nprocs, N_dims, point, array, retval;
  CCTK_REAL *interp_local_coords;
  CCTK_REAL *origin, *delta;
  const CCTK_REAL **data;
  const void **input_arrays;
  const pGH *pughGH;
  const pGExtras *extras;
  cGroupDynamicData group_data;
#ifdef CCTK_MPI
  int offset, proc, type, maxtype, N_local_points;
  void **local_output_arrays;
  pughInterpGH *myGH;
  type_desc_t *this, *type_desc;
#endif


  /* get dimensionality of the coordinate system */
  N_dims = CCTK_CoordSystemDim (coord_system_name);
  if (N_dims <= 0)
  {
    CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                "Cannot get dimensions of coordinate system '%s'",
                coord_system_name);
    return (-1);
  }

  /* check other arguments */
  retval = CheckArguments (GH, N_dims, N_points, N_input_arrays,
                           N_output_arrays, interp_coord_array_types);
  if (retval <= 0)
  {
    return (retval);
  }

  /* get extension handle for PUGH */
  pughGH = CCTK_GHExtension (GH, "PUGH");

  /* get the extras pointer of the first coordinate
     This is used later on to verify the layout of the input arrays as well
     as for mapping points to processors. */
  i = CCTK_CoordIndex (1, NULL, coord_system_name);
  extras = ((const pGA *) pughGH->variables[i][0])->extras;

  /* get dimensions, origin, and delta of the processor-local grid */
  /* NOTE: getting the dimensions should be a flesh routine as well
           for now we get the dimensions of every coordinate and take the
           i'th element - this is inconsistent !! */
  origin = malloc (2 * N_dims * sizeof (CCTK_REAL));
  delta  = origin + N_dims;
  input_arrays = malloc (N_input_arrays * sizeof (void *));
  for (i = 0; i < N_dims; i++)
  {
    CCTK_CoordLocalRange (GH, &origin[i], &delta[i], i + 1, NULL,
                          coord_system_name);
    delta[i] = (delta[i] - origin[i]) / extras->lnsize[i];
  }

  /* check that the input arrays dimensions match the coordinate system
     (but their dimensionality can be less) */
  for (array = 0; array < N_input_arrays; array++)
  {
    if (CCTK_GroupDynamicData (GH,
                               CCTK_GroupIndexFromVarI(input_array_indices[array]),
                               &group_data) < 0)
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Invalid input array index %d",
                  input_array_indices[array]);
      retval = -1;
      continue;
    }

    if (group_data.dim > N_dims)
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Input array variable with index %d has more dimensions "
                  "than coordinate system '%s'",
                  input_array_indices[array], coord_system_name);
      retval = -1;
      continue;
    }

    if (memcmp (group_data.lsh, extras->lnsize, group_data.dim * sizeof (int)))
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Dimensions of input array variable with index %d "
                  "doesn't match with coordinate system '%s'",
                  input_array_indices[array], coord_system_name);
      retval = -1;
    }

    /* get the data pointer to the input array (use current timelevel) */
    input_arrays[array] = CCTK_VarDataPtrI (GH, 0, input_array_indices[array]);
  }
  if (retval >= 0)
  {
    /* check for out-of-bounds points
       This check was originally in the local interpolator code but was disabled
       there and moved up here instead. Now local arrays can have out-of-bounds
       points, grid arrays cannot. */
    retval = CheckOutOfBounds (GH, coord_system_name, order, N_dims, N_points,
                               extras->nsize,
                               (const CCTK_REAL **) interp_coord_arrays);
  }

  if (retval < 0)
  {
    free (input_arrays);
    free (origin);
    return (retval);
  }

  /* single-processor case is easy: no communication or buffering, just direct
     interpolation of interp_coord_arrays from input_arrays into output_arrays */
  nprocs = CCTK_nProcs (GH);
  if (nprocs == 1)
  {
    /* sort the individual interpolation coordinate arrays into a single one */
    interp_local_coords = malloc (N_dims * N_points * sizeof (CCTK_REAL));
    data = (const CCTK_REAL **) interp_coord_arrays;
    for (point = 0; point < N_points; point++)
    {
      for (i = 0; i < N_dims; i++)
      {
        *interp_local_coords++ = data[i][point];
      }
    }
    interp_local_coords -= N_dims * N_points;

    /* call the interpolator function */
    retval = PUGHInterp_Interpolate (order,
                                     N_points, N_dims, N_output_arrays,
                                     extras->lnsize, interp_local_coords,
                                     origin, delta,
                                     output_array_types, input_arrays,
                                     output_array_types, output_arrays);

    /* free allocated resources */
    free (interp_local_coords);
    free (input_arrays);
    free (origin);

    return (retval);
  }

#ifdef CCTK_MPI
  /*** Here follows the multi-processor case:
       All processors locate their points to interpolate at
       and exchange the coordinates so that every processor gets
       those points which it can process locally.
       After interpolation the results have to be send back to the
       requesting processors.
       For both communications MPI_Alltoallv() is used.

       In order to minimize the total number of MPI_Alltoallv() calls
       (which are quite expensive) we collect the interpolation results
       for all output arrays of the same CCTK data type into a single
       communication buffer. That means, after communication the data
       needs to be resorted from the buffer into the output arrays.
   ***/

  /* first of all, set up a structure with information of the
     CCTK data types we have to deal with */

  /* get the maximum value of the output array CCTK data types
     NOTE: we assume that CCTK data types are defined as consecutive
           positive constants starting from zero */
  for (array = maxtype = 0; array < N_output_arrays; array++)
  {
    if (maxtype < output_array_types[array])
    {
      maxtype = output_array_types[array];
    }
  }

  /* now allocate an array of structures for all potential types */
  type_desc = calloc (maxtype + 1, sizeof (type_desc_t));

  /* count the number of arrays of same type
     (the N_arrays element was already initialized to zero by calloc() */
  for (array = 0; array < N_output_arrays; array++)
  {
    type_desc[output_array_types[array]].N_arrays++;
  }

  /* fill in the type description information */
  for (type = retval = 0, this = type_desc; type <= maxtype; type++, this++)
  {
    if (this->N_arrays > 0)
    {
      /* get the variable type size in bytes */
      this->vtypesize = CCTK_VarTypeSize (type);
      if (this->vtypesize <= 0)
      {
        CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                    "Invalid variable type %d passed, "
                    "arrays of such type will be skipped during interpolation",
                    type);
        this->N_arrays = 0;
        continue;
      }

      /* get the MPI data type to use for communicating such a CCTK data type */
      this->mpitype = PUGH_MPIDataType (pughGH, type);
      if (this->mpitype == MPI_DATATYPE_NULL)
      {
        CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                    "No MPI data type defined for variable type %d, "
                    "arrays of such type will be skipped during interpolation",
                    type);
        this->N_arrays = 0;
        continue;
      }

      retval++;
    }
  }

  /* check that there's at least one array with a valid CCTK data type */
  if (retval <= 0)
  {
    free (input_arrays);
    free (origin);
    free (type_desc);
    return (-1);
  }

  /* map the requested points to interpolate at onto the processors
     they belong to and gather the coordinates of all the points
     that this processor owns
     the number of processor-local points is returned in N_local_points,
     their coordinates in interp_local_coords */
  retval = GetLocalCoords (GH, N_points, coord_system_name, extras,
                           (const CCTK_REAL **) interp_coord_arrays,
                           &N_local_points, &interp_local_coords);
  if (retval)
  {
    free (input_arrays);
    free (origin);
    free (type_desc);
    return (retval);
  }

  /* allocate contiguous communication buffers for each CCTK data type
     holding the local interpolation results from all input arrays
     of that type
     If there are no points to process on this processor
     set the buffer pointer to an invalid but non-NULL value
     otherwise we might get trouble with NULL pointers in MPI_Alltoallv () */
  for (type = 0, this = type_desc; type <= maxtype; type++, this++)
  {
    if (this->N_arrays > 0 && N_local_points > 0)
    {
      this->sendbuf = malloc (N_local_points * this->N_arrays *this->vtypesize);
      this->buf = this->sendbuf;
    }
    else
    {
      /* dereferencing such an address should code crash on most systems */
      this->sendbuf = (void *) this->vtypesize;
    }
  }

  /* get extension handle for interp */
  myGH = CCTK_GHExtension (GH, "PUGHInterp");

  /* allocate new output_arrays array for local interpolation results
     from this processor */
  local_output_arrays = calloc (N_output_arrays, sizeof (void *));

  /* now, in a loop over all processors, do the interpolation
     and put the results in the communication buffer at the proper offset */
  for (proc = 0; proc < nprocs; proc++)
  {
    for (type = 0, this = type_desc; type <= maxtype; type++, this++)
    {
      if (this->N_arrays > 0)
      {
        for (array = 0; array < N_output_arrays; array++)
        {
          if (output_array_types[array] == type)
          {
            local_output_arrays[array] = this->buf;
            this->buf += myGH->N_points_to[proc] * this->vtypesize;
          }
        }
      }
    }

    /* call the interpolation operator to process all points of all
       output arrays for this processor */
    PUGHInterp_Interpolate (order,
                            myGH->N_points_to[proc], N_dims, N_output_arrays,
                            extras->lnsize, interp_local_coords, origin, delta,
                            output_array_types, input_arrays,
                            output_array_types, local_output_arrays);

    /* have to add offset for this processor to coordinates array */
    interp_local_coords += myGH->N_points_to[proc] * N_dims;

  } /* end of loop over all processors */

  /* don't need these anymore */
  if (N_local_points > 0)
  {
    interp_local_coords -= N_local_points * N_dims;
    free (interp_local_coords);
  }
  free (local_output_arrays);
  free (input_arrays);
  free (origin);

  /* now send the interpolation results back to the processors they were
     requested from, also receive my own results that were computed
     by other processors
     Since all the locally computed results are in a single contiguous buffer
     we need to call MPI_Alltoall() only once for each CCTK data type. */
  for (type = 0, this = type_desc; type <= maxtype; type++, this++)
  {
    /* skip unused types */
    if (this->N_arrays <= 0)
    {
      continue;
    }

    /* set up the communication (this is type-independent) */
    myGH->sendcnt[0] = this->N_arrays * myGH->N_points_to[0];
    myGH->recvcnt[0] = this->N_arrays * myGH->N_points_from[0];
    myGH->senddispl[0] = myGH->recvdispl[0] = 0;
    for (proc = 1; proc < pughGH->nprocs; proc++)
    {
      myGH->sendcnt[proc] = this->N_arrays * myGH->N_points_to[proc];
      myGH->recvcnt[proc] = this->N_arrays * myGH->N_points_from[proc];
      myGH->senddispl[proc] = myGH->senddispl[proc-1] + myGH->sendcnt[proc-1];
      myGH->recvdispl[proc] = myGH->recvdispl[proc-1] + myGH->recvcnt[proc-1];
    }

    /* allocate buffer for receiving my own requested points */
    /* avoid NULL pointers here because MPI_Alltoallv() doesn't like it */
    if (N_points > 0)
    {
      this->recvbuf = malloc (N_points * this->N_arrays * this->vtypesize);
    }
    else
    {
      /* access to such a fake address should crash the code on most systems */
      this->recvbuf = (void *) this->vtypesize;
    }

    /* now exchange the data for this CCTK data type */
    CACTUS_MPI_ERROR (MPI_Alltoallv (this->sendbuf, myGH->sendcnt,
                                     myGH->senddispl, this->mpitype,
                                     this->recvbuf, myGH->recvcnt,
                                     myGH->recvdispl, this->mpitype,
                                     pughGH->PUGH_COMM_WORLD));

    /* now that the data is sent we don't need the buffer anymore */
    if (N_local_points > 0)
    {
      free (this->sendbuf);
    }

    /* no sort neccessary if there are no points */
    if (N_points <= 0)
    {
      continue;
    }

    /* Go back from processor-sorted data to input-ordered data.
       The creation of the indices array above makes this not so bad. */
    this->buf = this->recvbuf;
    for (proc = offset = 0; proc < nprocs; proc++)
    {
      for (array = 0; array < N_output_arrays; array++)
      {
        if (output_array_types[array] != type)
        {
          continue;
        }

        /* now do the sorting according to the CCTK data type */
        if (output_array_types[array] == CCTK_VARIABLE_CHAR)
        {
          SORT_TYPED_ARRAY (CCTK_BYTE);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_INT)
        {
          SORT_TYPED_ARRAY (CCTK_INT);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_REAL)
        {
          SORT_TYPED_ARRAY (CCTK_REAL);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_COMPLEX)
        {
          SORT_TYPED_ARRAY (CCTK_COMPLEX);
        }
#ifdef CCTK_REAL4
        else if (output_array_types[array] == CCTK_VARIABLE_REAL4)
        {
          SORT_TYPED_ARRAY (CCTK_REAL4);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_COMPLEX8)
        {
          SORT_TYPED_ARRAY (CCTK_COMPLEX8);
        }
#endif
#ifdef CCTK_REAL8
        else if (output_array_types[array] == CCTK_VARIABLE_REAL8)
        {
          SORT_TYPED_ARRAY (CCTK_REAL8);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_COMPLEX16)
        {
          SORT_TYPED_ARRAY (CCTK_COMPLEX16);
        }
#endif
#ifdef CCTK_REAL16
        else if (output_array_types[array] == CCTK_VARIABLE_REAL16)
        {
          SORT_TYPED_ARRAY (CCTK_REAL16);
        }
        else if (output_array_types[array] == CCTK_VARIABLE_COMPLEX32)
        {
          SORT_TYPED_ARRAY (CCTK_COMPLEX32);
        }
#endif
        else
        {
          CCTK_WARN (0, "Implementation error");
        }

      } /* end of loop over all output arrays */

      /* advance the offset into the communication receive buffer */
      offset += myGH->N_points_from[proc];

    } /* end of loop over all processors */

    /* this communication receive buffer isn't needed anymore */
    free (this->recvbuf);

  } /* end of loop over all types */

  /* free remaining resources allocated within this run */
  if (myGH->whichproc)
  {
    free (myGH->whichproc);
    myGH->whichproc = NULL;
  }
  free (type_desc);
#endif /* MPI */

  return (0);
}


/**************************************************************************/
/*                            local routines                              */
/**************************************************************************/

#ifdef CCTK_MPI

/*@@
  @routine   GetLocalCoords
  @date      Sun Jul 04 1999
  @author    Thomas Radke
  @desc
  Collect the coordinates of all points to be processed locally
  into an array coords[N_dims][N_local_points].
  <B>
  This means for the single-processor case to sort

   inCoords1[N_points], inCoords2[npoints], ..., inCoords<N_dims>[npoints]
    into coords[N_dims][N_points]

  where N_points == N_local_points.
  <B>
  In the multiprocessor case all processors map their points' coordinates
  to the processor that owns this point and exchange this information
  via MPI_Alltoall ().
  N_local_points is then the number of all processors' points to be
  interpolated locally on this processor.
  <B>
  This routine returns the number of points to be processed locally and
  a pointer to the allocated array of their coordinates.
  @enddesc

  @var        GH
  @vdesc      Pointer to CCTK grid hierarchy
  @vtype      const cGH *
  @vio        in
  @endvar
  @var        N_points
  @vdesc      number of points to be interpolated on this processor
  @vtype      int
  @vio        in
  @endvar
  @var        isGlobal
  @vdesc      flag indicating that coordinates are global (and need to be
              collected over all processors)
  @vtype      int
  @vio        in
  @endvar
  @var        N_dims
  @vdesc      number of coordinate dimensions for each point
  @vtype      int
  @vio        in
  @endvar
  @var        coords
  @vdesc      coordinates of each point to be interpolated on this processor
  @vtype      CCTK_REAL array of size N_dims
  @vio        in
  @endvar
  @var        N_local_points
  @vdesc      number of points to be processed by this processor
  @vtype      int *
  @vio        out
  @endvar
  @var        local_coords
  @vdesc      coordinates of each point to be processed by this processor
  @vtype      pointer to CCTK_REAL array of dims[N_dims][N_local_points]
  @vio        out
  @endvar

@@*/
static int GetLocalCoords (const cGH *GH,
                           int N_points,
                           const char *coord_system_name,
                           const pGExtras *extras,
                           const CCTK_REAL *coords[],
                           int *N_local_points,
                           CCTK_REAL **local_coords)
{
  int dim, point;
  int tmp, proc, nprocs;
  pGH *pughGH;
  pughInterpGH *myGH;
  CCTK_REAL *range_min, *range_max;
  CCTK_REAL *origin, *delta;
  CCTK_REAL *proc_coords;
#define FUDGE 0.0


  /* get GH extension handles for PUGHInterp and PUGH */
  myGH = CCTK_GHExtension (GH, "PUGHInterp");
  pughGH = CCTK_GHExtension (GH, "PUGH");

  /* This holds the proccessor for *each* of N_points points */
  if (N_points > 0)
  {
    myGH->whichproc = malloc (2 * N_points * sizeof (int));
  }
  else
  {
    myGH->whichproc = NULL;
  }
  /* indices[] is used to make the sorting easier
     when receiving the output data */
  myGH->indices = myGH->whichproc + N_points;

  /* initialize whichproc with invalid processor number -1 */
  for (point = 0; point < N_points; point++)
  {
    myGH->whichproc[point] = -1;
  }

  /* initialize N_points_from to 0 for counting it up in the following loop */
  nprocs = CCTK_nProcs (GH);
  memset (myGH->N_points_from, 0, nprocs * sizeof (CCTK_INT));

  /* allocate the ranges for my local coordinates */
  range_min = malloc (4 * extras->dim * sizeof (CCTK_REAL));
  range_max = range_min + 1*extras->dim;
  origin    = range_min + 2*extras->dim;
  delta     = range_min + 3*extras->dim;

  /* get the global origin and delta of the coordinate system */
  for (dim = 0; dim < extras->dim; dim++)
  {
    CCTK_CoordRange (GH, &origin[dim], &delta[dim], dim+1, NULL, coord_system_name);
    delta[dim] = (delta[dim] - origin[dim]) / (extras->nsize[dim]-1);
  }

  /* locate the points to interpolate at */
  for (proc = 0; proc < nprocs; proc++)
  {
    for (dim = 0; dim < extras->dim; dim++)
    {
      /* compute the coordinate ranges */
      /* TODO: use bbox instead -- but the bboxes of other processors
         are now known */
      int const has_lower = extras->lb[proc][dim] == 0;
      int const has_upper = extras->ub[proc][dim] == GH->cctk_gsh[dim]-1;
      range_min[dim] = origin[dim] + (extras->lb[proc][dim] + (!has_lower) * (extras->nghostzones[dim]-0.5) - FUDGE)*delta[dim];
      range_max[dim] = origin[dim] + (extras->ub[proc][dim] - (!has_upper) * (extras->nghostzones[dim]-0.5) + FUDGE)*delta[dim];
    }

    /* and now which point will be processed by what processor */
    for (point = 0; point < N_points; point++)
    {
      /* skip points which have already been located */
      if (myGH->whichproc[point] >= 0)
      {
        continue;
      }

      /* check whether the point belongs to this processor
         (must be within min/max in all dimensions) */
      tmp = 0;
      for (dim = 0; dim < extras->dim; dim++)
      {
        if (coords[dim][point] >= range_min[dim] &&
            coords[dim][point] <= range_max[dim])
        {
          tmp++;
        }
      }
      if (tmp == extras->dim)
      {
        myGH->whichproc[point] = proc;
        myGH->N_points_from[proc]++;
      }
    }
  }
  /* don't need this anymore */
  free (range_min);

  /* make sure that all points could be mapped onto a processor */
  for (point = tmp = 0; point < N_points; point++)
  {
    if (myGH->whichproc[point] < 0)
    {
      int i;
      char *msg = malloc (80 + extras->dim*20);


      sprintf (msg, "Unable to locate point %d [%f",
               point, coords[0][point]);
      for (i = 1; i < extras->dim; i++)
      {
        sprintf (msg, "%s %f", msg, coords[i][point]);
      }
      sprintf (msg, "%s]", msg);
      CCTK_WARN (1, msg);
      free (msg);
      tmp = 1;                       /* mark as error */
    }
  }
  if (tmp)
  {
    if (myGH->whichproc)
    {
      free (myGH->whichproc);
      myGH->whichproc = NULL;
    }
    return (-1);
  }

  /* Now we want to resolve the N_points_from[]. Currently this is
     the form of ( in 2 proc mode )
     P1:  Num from P1  NFP2
     P2:  NFP1         NFP2

     and this needs to become
     P1:  Num to P1    NTP2
     P2:  NTP1         NTP1

     Since NTP1 = NFP2 (and this works in more proc mode too)
     this is an all-to-all communication.
     */
  CACTUS_MPI_ERROR (MPI_Alltoall (myGH->N_points_from, 1, PUGH_MPI_INT,
                                  myGH->N_points_to, 1, PUGH_MPI_INT,
                                  pughGH->PUGH_COMM_WORLD));

#ifdef PUGHINTERP_DEBUG
  for (proc = 0; proc < nprocs; proc++)
  {
    printf ("processor %d <-> %d  From: %d  To: %d\n",
            CCTK_MyProc (GH), proc, myGH->N_points_from[proc],
            myGH->N_points_to[proc]);
  }
#endif

  /* Great. Now we know how many to expect from each processor,
     and how many to send to each processor. So first we have
     to send the locations to the processors which hold our data.
     This means I send coords[dim][point] to whichproc[point].
     I have N_points_from[proc] to send to each processor.
     */

  /* This is backwards in the broadcast location; the number of points
     we are getting is how many everyone else is sending to us,
     eg, N_points_to, not how many we get back from everyone else,
     eg, N_points_from. The number we are sending, of course, is
     all of our locations, eg, N_points */
  *N_local_points = 0;
  for (proc = 0; proc < nprocs; proc++)
  {
    *N_local_points += myGH->N_points_to[proc];
  }

#ifdef PUGHINTERP_DEBUG
  printf ("processor %d gets %d points in total\n",
           CCTK_MyProc (GH), *N_local_points);
#endif

  /* allocate the local coordinates array (sorted in processor order)
     and the resulting coordinates array that I have to process */
  proc_coords = malloc (extras->dim * N_points * sizeof (CCTK_REAL));
  *local_coords = malloc (extras->dim * *N_local_points * sizeof (CCTK_REAL));

  /* now sort my own coordinates as tupels of [extras->dim] */
  for (proc = tmp = 0; proc < nprocs; proc++)
  {
    for (point = 0; point < N_points; point++)
    {
      if (myGH->whichproc[point] == proc)
      {
        for (dim = 0; dim < extras->dim; dim++)
        {
          *proc_coords++ = coords[dim][point];
        }
        myGH->indices[tmp++] = point;
      }
    }
  }
  proc_coords -= tmp * extras->dim;

  /* So load up the send and recv stuff */
  /* Send extras->dim elements per data point */
  myGH->sendcnt[0] = extras->dim * myGH->N_points_from[0];
  myGH->recvcnt[0] = extras->dim * myGH->N_points_to[0];
  myGH->senddispl[0] = myGH->recvdispl[0] = 0;
  for (proc = 1; proc < nprocs; proc++)
  {
    myGH->sendcnt[proc] = extras->dim * myGH->N_points_from[proc];
    myGH->recvcnt[proc] = extras->dim * myGH->N_points_to[proc];
    myGH->senddispl[proc] = myGH->senddispl[proc-1] + myGH->sendcnt[proc-1];
    myGH->recvdispl[proc] = myGH->recvdispl[proc-1] + myGH->recvcnt[proc-1];
  }

  /* Great, and now exchange the coordinates and collect the ones
     that I have to process in *local_coords[] */
  CACTUS_MPI_ERROR (MPI_Alltoallv (proc_coords, myGH->sendcnt,
                                   myGH->senddispl, PUGH_MPI_REAL,
                                   *local_coords, myGH->recvcnt,
                                   myGH->recvdispl, PUGH_MPI_REAL,
                                   pughGH->PUGH_COMM_WORLD));

  /* don't need this anymore */
  free (proc_coords);

  return (0);
}
#endif /* CCTK_MPI */


 /*@@
   @routine    CheckArguments
   @date       Thu 25 Jan 2001
   @author     Thomas Radke
   @desc
               Checks the interpolation arguments passed in via
               the flesh's general interpolation calling interface

               This routine also verifies that the parameters meet
               the limitations of PUGHInterp's interpolation operators.
   @enddesc

   @var        GH
   @vdesc      Pointer to CCTK grid hierarchy
   @vtype      const cGH *
   @vio        in
   @endvar
   @var        N_dims
   @vdesc      dimensionality of the underlying grid
   @vtype      int
   @vio        in
   @endvar
   @var        N_points
   @vdesc      number of points to interpolate at
   @vtype      int
   @vio        in
   @endvar
   @var        N_input_arrays
   @vdesc      number of passed input arrays
   @vtype      int
   @vio        in
   @endvar
   @var        N_output_arrays
   @vdesc      number of passed input arrays
   @vtype      int
   @vio        in
   @endvar
   @var        interp_coord_array_types
   @vdesc      types of passed coordinates to interpolate at
   @vtype      int [N_dims]
   @vio        in
   @endvar

   @returntype int
   @returndesc
               +1 for success
                0 for success but nothing to do
               -1 for failure (wrong parameters passed or limitations not met)
   @endreturndesc
@@*/
static int CheckArguments (const cGH *GH,
                           int N_dims,
                           int N_points,
                           int N_input_arrays,
                           int N_output_arrays,
                           const int interp_coord_array_types[])
{
  int i;


  /* check for invalid arguments */
  if (N_dims < 0 || N_points < 0 || N_input_arrays < 0 || N_output_arrays < 0)
  {
    return (-1);
  }

  /* check if there's anything to do at all */
  /* NOTE: N_points can be 0 in a collective call */
  if (N_dims == 0 || (CCTK_nProcs (GH) == 1 && N_points == 0) ||
      N_input_arrays == 0 || N_output_arrays == 0)
  {
    return (0);
  }

  /* for now we can only deal with coordinates of type CCTK_REAL */
  for (i = 0; i < N_dims; i++)
  {
    if (interp_coord_array_types[i] != CCTK_VARIABLE_REAL)
    {
      CCTK_WARN (1, "Interpolation coordinates must be of type CCTK_REAL");
      return (-1);
    }
  }

  /* PUGHInterp's interpolation operators compute one output array
     per input array */
  if (N_input_arrays != N_output_arrays)
  {
    CCTK_WARN (1, "Number of input arrays must match number of output arrays");
    return (-1);
  }

  return (1);
}


static int CheckOutOfBounds (const cGH *GH, const char *coord_system_name,
                             int order, int N_dims, int N_points,
                             const int *dims, const CCTK_REAL *const *coords)
{
  int i, p, point, out_of_bounds, retval;
  CCTK_REAL *origin, *delta, *delta_inv, *below, *offset;
  char *msg;


  msg    = malloc (100 + N_dims*(10 + 4*30));
  origin = malloc (5 * N_dims * sizeof (CCTK_REAL));
  delta     = origin + 1*N_dims;
  delta_inv = origin + 2*N_dims;
  below     = origin + 3*N_dims;
  offset    = origin + 4*N_dims;

  /* get the global origin and delta of the coordinate system */
  for (i = 0; i < N_dims; i++)
  {
    CCTK_CoordRange (GH, &origin[i], &delta[i], i+1, NULL, coord_system_name);
    delta[i] = (delta[i] - origin[i]) / (dims[i]-1);

    /* avoid expensive divisions by delta later on */
    delta_inv[i] = 1.0 / delta[i];
  }

  retval = 0;

  for (p = 0; p < N_points; p++)
  {
    /* reset the out-of-bounds flag */
    out_of_bounds = 0;

    /* loop over all dimensions */
    for (i = 0; i < N_dims; i++)
    {
      /* closest grid point for stencil */
      point = floor ((coords[i][p] - origin[i]) * delta_inv[i]
                     - 0.5 * (order - 1));

      /* test bounds */
      out_of_bounds |= point < 0 || point+order >= dims[i];

      /* physical coordinate of that grid point */
      below[i] = origin[i] + point * delta[i];

      /* offset from that grid point, in fractions of grid points */
      offset[i] = (coords[i][p] - below[i]) * delta_inv[i];
    }

    /* check bounds */
    if (out_of_bounds)
    {
      /* put all information into a single message string for output */
      sprintf (msg, "Interpolation stencil out of bounds at grid point [%f",
               (double) coords[0][p]);
      for (i = 1; i < N_dims; i++)
      {
        sprintf (msg, "%s, %f", msg, (double) coords[i][p]);
      }
      sprintf (msg, "%s]\nrange would be min/max [%f / %f", msg,
               (double) below[0], (double) (below[0] + offset[0]));
      for (i = 1; i < N_dims; i++)
      {
        sprintf (msg, "%s, %f / %f", msg,
                 (double) below[i], (double) (below[i] + offset[i]));
      }
      sprintf (msg, "%s]\ngrid is min/max        [%f / %f", msg,
               (double) origin[0], (double) (origin[0] + (dims[0]-1)*delta[0]));
      for (i = 1; i < N_dims; i++)
      {
        sprintf (msg, "%s, %f / %f", msg,
                 (double)origin[i], (double)(origin[i] + (dims[i]-1)*delta[i]));
      }
      sprintf (msg, "%s]", msg);
      CCTK_WARN (1, msg);

      retval--;
    }
  }

  /* free allocated resources */
  free (origin);
  free (msg);

  return (retval);
}