aboutsummaryrefslogtreecommitdiff
path: root/src/InterpGridArrays.c
blob: c11c52b2ed8bddacb36122fda8dacd53044f89dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
 /*@@
   @file      InterpGridArrays.c
   @date      Tue 10 Dec 2002
   @author    Thomas Radke
   @desc
              Implementation of PUGHInterp's global interpolator routine
              which overloads CCTK_InterpGridArrays()
   @enddesc

   @history
   @date      Tue 10 Dec 2002
   @author    Thomas Radke
   @hdesc     source code copied from Operator.c which implements the old
              API for global interpolation
   @endhistory
   @version   $Id$
 @@*/

#include <stdlib.h>
#include <string.h>

#include "util_ErrorCodes.h"
#include "util_Table.h"
#include "cctk.h"
#include "CactusPUGH/PUGH/src/include/pugh.h"
#include "pughInterpGH.h"

/* the rcs ID and its dummy function to use it */
static const char *rcsid = "$Header$";
CCTK_FILEVERSION(CactusPUGH_PUGHInterp_InterpGridArrays_c)


/********************************************************************
 ********************    Macro Definitions   ************************
 ********************************************************************/
/* uncomment this to get some debugging output */
/* #define PUGHINTERP_DEBUG 1 */

/* fudge factor for mapping points onto processors */
#define FUDGE 0.0

/* macro do sort interpolation results from a single communication buffer
   into their appropriate output arrays */
#define SORT_TYPED_ARRAY(cctk_type)                                           \
        {                                                                     \
          int _i;                                                             \
          cctk_type *_src, *_dst;                                             \
                                                                              \
                                                                              \
          _src = (cctk_type *) this->buf;                                     \
          _dst = (cctk_type *) output_arrays[array];                          \
          for (_i = 0; _i < myGH->N_points_from[proc]; _i++)                  \
          {                                                                   \
            _dst[myGH->indices[_i + offset]] = *_src++;                       \
          }                                                                   \
          this->buf = (char *) _src;                                          \
        }



/********************************************************************
 ***********************    Type Definitions   **********************
 ********************************************************************/
#ifdef CCTK_MPI
/* internal structure describing a handle for a single CCTK data type */
typedef struct
{
  int vtypesize;          /* variable type's size in bytes */
  MPI_Datatype mpitype;   /* corresponding MPI datatype */
  int N_arrays;           /* number of in/out arrays */
  void *sendbuf;          /* communication send buffer for this type */
  void *recvbuf;          /* communication receive buffer for this type */
  char *buf;              /* work pointer for sendbuf */
} type_desc_t;
#endif


/********************************************************************
 ********************    Internal Routines   ************************
 ********************************************************************/
static int CreateParameterTable (int param_table_handle);


/*@@
   @routine    PUGHInterp_InterpGridArrays
   @date       Mon 16 Dec 2002
   @author     Thomas Radke
   @desc
               PUGHInterp's interpolation routine for distributed grid arrays.
               This routine overloads CCTK_InterpGridArrays().
   @enddesc

   @var        GH
   @vdesc      pointer to CCTK grid hierarchy
   @vtype      const cGH *
   @vio        in
   @endvar
   @var        N_dims
   @vdesc      number of dimensions for the interpolation
   @vtype      int
   @vio        in
   @endvar
   @var        param_table_handle
   @vdesc      parameter table handle for passing optional parameters to the
               interpolator routine
   @vtype      int
   @vio        in
   @endvar
   @var        coord_system_handle
   @vdesc      handle for the underlying coordinate system
   @vtype      int
   @vio        in
   @endvar
   @var        N_points
   @vdesc      number of points to interpolate at
   @vtype      int
   @vio        in
   @endvar
   @var        interp_coords_type
   @vdesc      CCTK datatype of the coordinate arrays as passed via
               <interp_coords> (common datatype for all arrays)
   @vtype      int
   @vio        in
   @endvar
   @var        interp_coords
   @vdesc      list of <N_dims> arrays with coordinate for <N_points>
               points to interpolate at
   @vtype      const void *const []
   @vio        in
   @endvar
   @var        N_input_arrays
   @vdesc      number of input arrays
   @vtype      int
   @vio        in
   @endvar
   @var        input_array_indices
   @vdesc      list of <N_input_arrays> grid variables (given by their indices)
               to interpolate
   @vtype      const CCTK_INT []
   @vio        in
   @endvar
   @var        N_output_arrays
   @vdesc      number of output arrays
   @vtype      int
   @vio        in
   @endvar
   @var        out_array_types
   @vdesc      list of <N_output_arrays> requested CCTK datatypes for the
               output arrays
   @vtype      const CCTK_INT []
   @vio        in
   @endvar
   @var        output_arrays
   @vdesc      list of <N_output_arrays> output arrays (given by their pointers)
               which receive the interpolation results
   @vtype      void *const []
   @vio        out
   @endvar

   @returntype int
   @returndesc
               0  - successful interpolation
               -1 - in case of any errors
   @endreturndesc
@@*/
int PUGHInterp_InterpGridArrays (const cGH *GH,
                                 int N_dims,
                                 int param_table_handle,
                                 int local_interp_handle,
                                 int coord_system_handle,
                                 int N_points,
                                   int interp_coords_type,
                                   const void *const interp_coords[],
                                 int N_input_arrays,
                                   const CCTK_INT input_array_indices[],
                                 int N_output_arrays,
                                   const CCTK_INT output_array_types[],
                                   void *const output_arrays[])
{
  int i, retval;
  CCTK_REAL *origin_local, *delta_local;
  CCTK_INT *input_array_dims, *input_array_types;
  const void **input_arrays;
  const char *coord_system_name;
  const pGH *pughGH;
  const pGExtras *extras;
  cGroupDynamicData group_data;
#ifdef CCTK_MPI
  pughInterpGH *myGH;
  CCTK_REAL **interp_coords_local;
  int N_points_local, N_types;
  int j, point, proc, array, type, offset;
  char *msg;
  char **output_arrays_local;
  type_desc_t *this, *type_desc;
  CCTK_REAL *range_min, *range_max;
  CCTK_REAL *origin_global, *delta_global;
  CCTK_REAL *interp_coords_proc, *coords;
#endif


  pughGH = CCTK_GHExtension (GH, "PUGH");

  /* check function arguments */
  if (GH == NULL)
  {
    return (UTIL_ERROR_BAD_INPUT);
  }
  if (N_dims <= 0)
  {
    CCTK_WARN (1, "N_dims argument must have a positive value");
    return (UTIL_ERROR_BAD_INPUT);
  }
  if (N_points < 0 || N_input_arrays < 0 || N_output_arrays < 0)
  {
    CCTK_WARN (1, "N_points, N_input_arrays, and N_output_arrays arguments "
               "must have a non-negative value");
    return (UTIL_ERROR_BAD_INPUT);
  }

  /* right now we don't allow query calls only to the local interpolator
     so N_points must be positive and the set of input/output arrays
     must be non-empty */
  if (pughGH->nprocs == 1 && N_points == 0)
  {
    return (0);    /* no error */
  }
  if (N_input_arrays == 0 || N_output_arrays == 0)
  {
    CCTK_WARN (1, "number of input/output arrays must be non-zero");
    return (UTIL_ERROR_BAD_INPUT);
  }
  if ((N_points > 0 && interp_coords == NULL) || input_array_indices == NULL ||
      output_array_types == NULL || output_arrays == NULL)
  {
    CCTK_WARN (1, "input/output array pointer arguments must be non-NULL");
    return (UTIL_ERROR_BAD_INPUT);
  }

  if (interp_coords_type != CCTK_VARIABLE_REAL)
  {
    CCTK_WARN (1, "interpolation coordinates must be of datatype CCTK_REAL");
    return (UTIL_ERROR_BAD_INPUT);
  }

  coord_system_name = CCTK_CoordSystemName (coord_system_handle);
  if (coord_system_name == NULL)
  {
    return (UTIL_ERROR_BAD_HANDLE);
  }
  if (CCTK_CoordSystemDim (coord_system_name) < N_dims)
  {
    CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                "coordinate system '%s' has less dimensions than interpolation "
                "coordinates (dim = %d)", coord_system_name, N_dims);
    return (UTIL_ERROR_BAD_INPUT);
  }

  /* create the parameter table for the local interpolator from the
     user-supplied parameter table */
  param_table_handle = CreateParameterTable (param_table_handle);
  if (param_table_handle < 0)
  {
    return (param_table_handle);
  }


  /*************************************************************************/


  /* allocate some temporary arrays */
  origin_local = malloc (2 * N_dims * sizeof (CCTK_REAL));
  delta_local  = origin_local + N_dims;
  input_arrays = malloc (N_input_arrays * sizeof (void *));
  input_array_dims = malloc ((N_dims + N_input_arrays) * sizeof (CCTK_INT));
  input_array_types = input_array_dims + N_dims;

  /* get the extras pointer of the first coordinate
     This is used later on to verify the layout of the input arrays as well
     as for mapping points to processors. */
  i = CCTK_CoordIndex (1, NULL, coord_system_name);
  extras = ((const pGA *) pughGH->variables[i][0])->extras;

  /* get the origin and delta of the processor-local grid,
     copy the integer dimension array into an CCTK_INT array */
  for (i = 0; i < N_dims; i++)
  {
    CCTK_CoordLocalRange (GH, &origin_local[i], &delta_local[i], i + 1,
                          NULL, coord_system_name);
    delta_local[i] = (delta_local[i] - origin_local[i]) / extras->lnsize[i];
    input_array_dims[i] = extras->lnsize[i];
  }

  /* check that the input arrays dimensions match the coordinate system
     (but their dimensionality can be less) */
  for (i = retval = 0; i < N_input_arrays; i++)
  {
    if (CCTK_GroupDynamicData (GH,
                               CCTK_GroupIndexFromVarI(input_array_indices[i]),
                               &group_data) < 0)
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Invalid input array index %d",
                  input_array_indices[i]);
      retval = UTIL_ERROR_BAD_INPUT;
      continue;
    }

    if (group_data.dim > N_dims)
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Input array variable with index %d has more dimensions "
                  "than coordinate system '%s'",
                  input_array_indices[i], coord_system_name);
      retval = UTIL_ERROR_BAD_INPUT;
      continue;
    }

    if (memcmp (group_data.lsh, extras->lnsize, group_data.dim * sizeof (int)))
    {
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Dimensions of input array variable with index %d "
                  "doesn't match with coordinate system '%s'",
                  input_array_indices[i], coord_system_name);
      retval = UTIL_ERROR_BAD_INPUT;
    }

    /* get the data pointer to the input array (use current timelevel)
       and datatype */
    input_arrays[i] = CCTK_VarDataPtrI (GH, 0, input_array_indices[i]);
    input_array_types[i] = CCTK_VarTypeI (input_array_indices[i]);
  }

  /* single-processor case directly calls the local interpolator */
  if (retval >= 0 && pughGH->nprocs == 1)
  {
    retval = CCTK_InterpLocalUniform (N_dims, local_interp_handle,
                                      param_table_handle,
                                      origin_local, delta_local, N_points,
                                      interp_coords_type, interp_coords,
                                      N_input_arrays, input_array_dims,
                                      input_array_types, input_arrays,
                                      N_output_arrays, output_array_types,
                                      output_arrays);
  }
  if (retval < 0 || pughGH->nprocs == 1)
  {
    free (origin_local);
    free (input_arrays);
    free (input_array_dims);

    return (retval);
  }

#ifdef CCTK_MPI
  /*** Here follows the multi-processor case:
       All processors locate their points to interpolate at
       and exchange the coordinates so that every processor gets
       those points which it can process locally.
       After interpolation the results have to be sent back to the
       requesting processors.
       For both communications MPI_Alltoallv() is used.

       In order to minimize the total number of MPI_Alltoallv() calls
       (which are quite expensive) we collect the interpolation results
       for all output arrays of the same CCTK data type into a single
       communication buffer. That means, after communication the data
       needs to be resorted from the buffer into the output arrays.
   ***/

  /* first of all, set up a structure with information of the
     CCTK data types we have to deal with */

  /* get the maximum value of the output array CCTK data types
     NOTE: we assume that CCTK data types are defined as consecutive
           positive constants starting from zero */
  for (array = N_types = 0; array < N_output_arrays; array++)
  {
    if (N_types < output_array_types[array])
    {
      N_types = output_array_types[array];
    }
  }

  /* now allocate an array of structures to describe all possible types */
  type_desc = calloc (N_types + 1, sizeof (type_desc_t));

  /* count the number of arrays of same type
     (the N_arrays element was already initialized to zero by calloc() */
  for (array = 0; array < N_output_arrays; array++)
  {
    type_desc[output_array_types[array]].N_arrays++;
  }

  /* fill in the type description information */
  for (type = retval = 0, this = type_desc; type <= N_types; type++, this++)
  {
    if (this->N_arrays > 0)
    {
      /* get the variable type size in bytes */
      this->vtypesize = CCTK_VarTypeSize (type);
      if (this->vtypesize <= 0)
      {
        CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                    "Invalid variable type %d passed, arrays of such type will "
                    "be skipped during interpolation", type);
        this->N_arrays = 0;
        continue;
      }

      /* get the MPI data type to use for communicating such a CCTK data type */
      this->mpitype = PUGH_MPIDataType (pughGH, type);
      if (this->mpitype == MPI_DATATYPE_NULL)
      {
        CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                    "No MPI data type defined for variable type %d, arrays of "
                    "such type will be skipped during interpolation", type);
        this->N_arrays = 0;
        continue;
      }

      retval++;
    }
  }

  /* check that there's at least one array with a valid CCTK data type */
  if (retval <= 0)
  {
    free (origin_local);
    free (input_arrays);
    free (input_array_dims);
    free (type_desc);

    return (UTIL_ERROR_BAD_INPUT);
  }

  myGH = CCTK_GHExtension (GH, "PUGHInterp");

  /* map the requested points to interpolate at onto the processors
     they belong to and gather the coordinates of all the points local to
     this processor

     the number of processor-local points is returned in N_points_local,
     their coordinates in interp_coords_local */

  /* this holds the proccessor for *each* of N_points points */
  myGH->whichproc = NULL;
  if (N_points > 0)
  {
    myGH->whichproc = malloc (2 * N_points * sizeof (int));
  }
  /* indices[] is used to make the sorting easier
     when receiving the output data */
  myGH->indices = myGH->whichproc + N_points;

  /* initialize whichproc with invalid processor number -1 */
  for (point = 0; point < N_points; point++)
  {
    myGH->whichproc[point] = -1;
  }
  
  /* initialize N_points_from to 0 for counting it up in the following loop */
  memset (myGH->N_points_from, 0, pughGH->nprocs * sizeof (CCTK_INT));

  /* allocate the ranges for my local coordinates */
  range_min = malloc (4 * N_dims * sizeof (CCTK_REAL));
  range_max = range_min + 1*N_dims;
  origin_global = range_min + 2*N_dims;
  delta_global  = range_min + 3*N_dims;

  /* get the global origin and delta of the coordinate system */
  for (i = 0; i < N_dims; i++)
  {
    CCTK_CoordRange (GH, &origin_global[i], &delta_global[i], i+1, NULL,
                     coord_system_name);
    delta_global[i] = (delta_global[i]-origin_global[i]) / (extras->nsize[i]-1);
  }

  /* locate the points to interpolate at */
  for (proc = 0; proc < pughGH->nprocs; proc++)
  {
    for (i = 0; i < N_dims; i++)
    {
      /* compute the coordinate ranges */
      /* TODO: use bbox instead -- but the bboxes of other processors
	 are not known */
      int const has_lower = extras->lb[proc][i] == 0;
      int const has_upper = extras->ub[proc][i] == GH->cctk_gsh[i]-1;
      range_min[i] = origin_global[i] + (extras->lb[proc][i] + (!has_lower) * (extras->nghostzones[i]-0.5) - FUDGE)*delta_global[i];
      range_max[i] = origin_global[i] + (extras->ub[proc][i] - (!has_upper) * (extras->nghostzones[i]-0.5) + FUDGE)*delta_global[i];
    }

    /* and now which point will be processed by what processor */
    for (point = 0; point < N_points; point++)
    {
      /* skip points which already have been located */
      if (myGH->whichproc[point] >= 0)
      {
        continue;
      }

      /* check if the point belongs to this processor
         (must be within min/max in all dimensions) */
      for (i = j = 0; i < N_dims; i++)
      {
        if (((const CCTK_REAL *) interp_coords[i])[point] >= range_min[i] &&
            ((const CCTK_REAL *) interp_coords[i])[point] <= range_max[i])
        {
          j++;
        }
      }
      if (j == N_dims)
      {
        myGH->whichproc[point] = proc;
        myGH->N_points_from[proc]++;
      }
    }
  }
  /* don't need this anymore */
  free (range_min);

  /* make sure that all points could be mapped onto a processor */
  for (point = j = 0; point < N_points; point++)
  {
    if (myGH->whichproc[point] < 0)
    {
      msg = malloc (80 + N_dims*20);
      sprintf (msg, "Unable to locate point %d [%f",
               point, (double) ((const CCTK_REAL *) interp_coords[0])[point]);
      for (i = 1; i < N_dims; i++)
      {
        sprintf (msg, "%s %f",
                 msg, (double) ((const CCTK_REAL *) interp_coords[i])[point]);
      }
      sprintf (msg, "%s]", msg);
      CCTK_WARN (1, msg);
      free (msg);
      j = 1;                       /* mark as error */
    }
  }
  if (j)
  {
    if (myGH->whichproc)
    {
      free (myGH->whichproc);
      myGH->whichproc = NULL;
    }
    free (origin_local);
    free (input_arrays);
    free (input_array_dims);
    free (type_desc);

    return (UTIL_ERROR_BAD_INPUT);
  }

  /* Now we want to resolve the N_points_from[]. Currently this is
     the form of ( in 2 proc mode )
     P1:  Num from P1  NFP2
     P2:  NFP1         NFP2

     and this needs to become
     P1:  Num to P1    NTP2
     P2:  NTP1         NTP1

     Since NTP1 = NFP2 (and this works in more proc mode too)
     this is an all-to-all communication.
     */
  CACTUS_MPI_ERROR (MPI_Alltoall (myGH->N_points_from, 1, PUGH_MPI_INT,
                                  myGH->N_points_to, 1, PUGH_MPI_INT,
                                  pughGH->PUGH_COMM_WORLD));

#ifdef PUGHINTERP_DEBUG
  for (proc = 0; proc < pughGH->nprocs; proc++)
  {
    printf ("processor %d <-> %d  From: %d  To: %d\n",
            CCTK_MyProc (GH), proc, myGH->N_points_from[proc],
            myGH->N_points_to[proc]);
  }
#endif

  /* Great. Now we know how many to expect from each processor,
     and how many to send to each processor. So first we have
     to send the locations to the processors which hold our data.
     This means I send interp_coords[i][point] to whichproc[point].
     I have N_points_from[proc] to send to each processor.
     */
  
  /* This is backwards in the broadcast location; the number of points
     we are getting is how many everyone else is sending to us,
     eg, N_points_to, not how many we get back from everyone else,
     eg, N_points_from. The number we are sending, of course, is
     all of our locations, eg, N_points */
  for (proc = N_points_local = 0; proc < pughGH->nprocs; proc++)
  {
    N_points_local += myGH->N_points_to[proc];
  }

#ifdef PUGHINTERP_DEBUG
  printf ("processor %d gets %d points in total\n",
           CCTK_MyProc (GH), N_points_local);
#endif

  /* allocate the local coordinates array (sorted in processor order) */
  interp_coords_proc = NULL;
  if (N_points > 0)
  {
    interp_coords_proc = malloc (N_dims * N_points * sizeof (CCTK_REAL));
  }

  /* now sort my own coordinates as tupels of [N_dims] */
  for (proc = j = 0; proc < pughGH->nprocs; proc++)
  {
    for (point = 0; point < N_points; point++)
    {
      if (myGH->whichproc[point] == proc)
      {
        for (i = 0; i < N_dims; i++)
        {
          interp_coords_proc[N_dims*j + i] =
            ((const CCTK_REAL *) interp_coords[i])[point];
        }
        myGH->indices[j++] = point;
      }
    }
  }

  /* So load up the send and recv stuff */
  /* Send N_dims elements per data point */
  myGH->sendcnt[0] = N_dims * myGH->N_points_from[0];
  myGH->recvcnt[0] = N_dims * myGH->N_points_to[0];
  myGH->senddispl[0] = myGH->recvdispl[0] = 0;
  for (proc = 1; proc < pughGH->nprocs; proc++)
  {
    myGH->sendcnt[proc] = N_dims * myGH->N_points_from[proc];
    myGH->recvcnt[proc] = N_dims * myGH->N_points_to[proc];
    myGH->senddispl[proc] = myGH->senddispl[proc-1] + myGH->sendcnt[proc-1];
    myGH->recvdispl[proc] = myGH->recvdispl[proc-1] + myGH->recvcnt[proc-1];
  }
 
  /* Great, and now exchange the coordinates and collect the ones
     that I have to process in *interp_coords_local[] */
  coords = NULL;
  if (N_points_local > 0)
  {
    coords = malloc (N_dims * N_points_local * sizeof (CCTK_REAL));
  }
  CACTUS_MPI_ERROR (MPI_Alltoallv (interp_coords_proc, myGH->sendcnt,
                                   myGH->senddispl, PUGH_MPI_REAL,
                                   coords, myGH->recvcnt,
                                   myGH->recvdispl, PUGH_MPI_REAL,
                                   pughGH->PUGH_COMM_WORLD));

  /* don't need this anymore */
  if (interp_coords_proc)
  {
    free (interp_coords_proc);
  }

  /* finally, sort the local coordinates array (which is flat one-dimensional)
     into the interp_coords[N_dim][N_points_local] array */
  interp_coords_local = malloc (N_dims * sizeof (CCTK_REAL *));
  for (i = 0; i < N_dims; i++)
  {
    interp_coords_local[i] = NULL;
    if (N_points_local > 0)
    {
      interp_coords_local[i] = malloc (N_points_local * sizeof (CCTK_REAL));
      for (point = 0; point < N_points_local; point++)
      {
        interp_coords_local[i][point] = coords[point*N_dims + i];
      }
    }
  }

  if (coords)
  {
    free (coords);
  }

  /* allocate intermediate output arrays for local interpolation */
  output_arrays_local = calloc (N_output_arrays, sizeof (void *));
  if (N_points_local > 0)
  {
    for (array = 0; array < N_output_arrays; array++)
    {
      this = type_desc + output_array_types[array];
      output_arrays_local[array] = malloc (N_points_local * this->vtypesize);
    }

    /* now call the local interpolator for all local points and store
       the results in the intermediate local output arrays */
    retval = CCTK_InterpLocalUniform (N_dims, local_interp_handle,
                                      param_table_handle,
                                      origin_local, delta_local, N_points_local,
                                      interp_coords_type,
                                      (const void **) interp_coords_local,
                                      N_input_arrays, input_array_dims,
                                      input_array_types, input_arrays,
                                      N_output_arrays, output_array_types,
                                      (void **) output_arrays_local);

    /* don't need these anymore */
    for (i = 0; i < N_dims; i++)
    {
      free (interp_coords_local[i]);
    }
  }

  /* clean up some intermediate arrays */
  free (interp_coords_local);
  free (origin_local);
  free (input_arrays);
  free (input_array_dims);

  /* now send the interpolation results to the processors which requested them,
     and also receive my own results that were computed remotely.
     Before we can do the communication in one go (for each datatype, of course)
     we have to sort the results from the intermediate output arrays, which the
     local interpolator wanted, into a single contiguous communication buffer.*/
  for (type = 0, this = type_desc; type <= N_types; type++, this++)
  {
    /* skip unused types */
    if (this->N_arrays <= 0)
    {
      continue;
    }

    /* set up the communication (this is type-independent) */
    myGH->sendcnt[0] = this->N_arrays * myGH->N_points_to[0];
    myGH->recvcnt[0] = this->N_arrays * myGH->N_points_from[0];
    myGH->senddispl[0] = myGH->recvdispl[0] = 0;
    for (proc = 1; proc < pughGH->nprocs; proc++)
    {
      myGH->sendcnt[proc] = this->N_arrays * myGH->N_points_to[proc];
      myGH->recvcnt[proc] = this->N_arrays * myGH->N_points_from[proc];
      myGH->senddispl[proc] = myGH->senddispl[proc-1] + myGH->sendcnt[proc-1];
      myGH->recvdispl[proc] = myGH->recvdispl[proc-1] + myGH->recvcnt[proc-1];
    }

    /* Allocate contiguous communication buffer for each datatype into which
       the local interpolation results from all input arrays of that datatype
       will be written to.
       If there are no points to send/receive by this processor
       set the buffer pointer to an invalid but non-NULL value
       otherwise we might get trouble with NULL pointers in MPI_Alltoallv () */

    /* dereferencing such an address should code crash on most systems */
    this->sendbuf = this->recvbuf = (void *) this->vtypesize;

    /* here goes the allocation for the send buffer, along with copying the
       results from the intermediate local output arrays */
    if (N_points_local > 0)
    {
      this->buf = malloc (this->N_arrays * N_points_local * this->vtypesize);
      this->sendbuf = this->buf;

      for (proc = offset = 0; proc < pughGH->nprocs; proc++)
      {
        for (array = 0; array < N_output_arrays; array++)
        {
          if (output_array_types[array] != type)
          {
            continue;
          }

          memcpy (this->buf, output_arrays_local[array] + offset,
                  myGH->N_points_to[proc] * this->vtypesize);
          this->buf += myGH->N_points_to[proc] * this->vtypesize;
        }
        offset += myGH->N_points_to[proc] * this->vtypesize;
      }
    }

    /* receive buffer is easy */
    if (N_points > 0)
    {
      this->recvbuf = malloc (this->N_arrays * N_points*this->vtypesize);
    }

    /* now do the global exchange for this datatype */
    CACTUS_MPI_ERROR (MPI_Alltoallv (this->sendbuf, myGH->sendcnt,
                                     myGH->senddispl, this->mpitype,
                                     this->recvbuf, myGH->recvcnt,
                                     myGH->recvdispl, this->mpitype,
                                     pughGH->PUGH_COMM_WORLD));

    /* now that the data is sent we don't need the send buffer anymore */
    if (N_points_local > 0)
    {
      free (this->sendbuf);
    }

    /* no sort neccessary if there are no points */
    if (N_points <= 0)
    {
      continue;
    }

    /* go back from processor-sorted data to input-ordered data.
       The creation of the indices array above makes this not so bad. */ 
    this->buf = this->recvbuf;
    for (proc = offset = 0; proc < pughGH->nprocs; proc++)
    {
      if (myGH->N_points_from[proc] <= 0)
      {
        continue;
      }

      for (array = 0; array < N_output_arrays; array++)
      {
        if (output_array_types[array] != type)
        {
          continue;
        }

        /* now do the sorting according to the CCTK data type */
        switch (output_array_types[array])
        {
          case CCTK_VARIABLE_CHAR:      SORT_TYPED_ARRAY (CCTK_BYTE); break;
          case CCTK_VARIABLE_INT:       SORT_TYPED_ARRAY (CCTK_INT); break;
          case CCTK_VARIABLE_REAL:      SORT_TYPED_ARRAY (CCTK_REAL); break;
          case CCTK_VARIABLE_COMPLEX:   SORT_TYPED_ARRAY (CCTK_COMPLEX); break;
#ifdef CCTK_REAL4
          case CCTK_VARIABLE_REAL4:     SORT_TYPED_ARRAY (CCTK_REAL4); break;
          case CCTK_VARIABLE_COMPLEX8:  SORT_TYPED_ARRAY (CCTK_COMPLEX8); break;
#endif
#ifdef CCTK_REAL8
          case CCTK_VARIABLE_REAL8:     SORT_TYPED_ARRAY (CCTK_REAL8); break;
          case CCTK_VARIABLE_COMPLEX16: SORT_TYPED_ARRAY (CCTK_COMPLEX16);break;
#endif
#ifdef CCTK_REAL16
          case CCTK_VARIABLE_REAL16:    SORT_TYPED_ARRAY (CCTK_REAL16); break;
          case CCTK_VARIABLE_COMPLEX32: SORT_TYPED_ARRAY (CCTK_COMPLEX32);break;
#endif
          default: CCTK_WARN (0, "Implementation error");
        }

      } /* end of loop over all output arrays */

      /* advance the offset into the communication receive buffer */
      offset += myGH->N_points_from[proc];

    } /* end of loop over all processors */

    /* this communication receive buffer isn't needed anymore */
    free (this->recvbuf);

  } /* end of loop over all types */

  /* free intermediate output arrays */
  for (array = 0; array < N_output_arrays; array++)
  {
    if (output_arrays_local[array])
    {
      free (output_arrays_local[array]);
    }
  }
  free (output_arrays_local);

  /* free remaining resources allocated within this run */
  if (myGH->whichproc)
  {
    free (myGH->whichproc);
    myGH->whichproc = NULL;
  }
  free (type_desc);
#endif /* MPI */

  return (retval);
}


/********************************************************************
 ********************    Internal Routines   ************************
 ********************************************************************/
 /*@@
   @routine    CreateParameterTable
   @date       Fri 20 Dec 2002
   @author     Thomas Radke
   @desc
               Parses the options given in the user-supplied parameter table
               and creates a parameter table to be passed to the local
               interpolator. If the user-supplied parameter table is invalid,
               a new table will be created.
               The table will be completed with necessary options from the
               global interpolator.
   @enddesc

   @var        param_table_handle
   @vdesc      handle to the user-supplied parameter table
   @vtype      int
   @vio        in
   @endvar

   @returntype int
   @returndesc
               handle to the new local parameter table, or<BR>
               one of the UTIL_ERROR_TABLE_* error codes
   @endreturndesc
@@*/
static int CreateParameterTable (int param_table_handle)
{
  int retval;


  retval = param_table_handle >= 0 ? param_table_handle : Util_TableCreate (0);
  if (retval < 0)
  {
    CCTK_WARN (1, "couldn't create interpolator parameter table");
  }

#if 0
  /* FIXME: must evaluate options from parameter table */
  if (Util_TableQueryNKeys (param_table_handle) > 0)
  {
    CCTK_WARN (1, "options in global interpolator parameter table are ignored "
               "so far");
  }
#endif

  return (retval);
}