aboutsummaryrefslogtreecommitdiff
path: root/src/multipole.cc
blob: 975d5899e14347d29f4f2a5409dda4effcc61fae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <string>
#include <iomanip>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"

#include "multipole.hh"
#include "interpolate.hh"
#include "utils.hh"
#include "sphericalharmonic.hh"

using namespace std;

static const int var_name_length = 30;
static const int max_vars = 10;

static const int max_spin_weights = 3;
static const int max_l_modes = 10;
static const int max_m_modes = 2 * max_l_modes + 1;

typedef struct
{
  int index;
  int imag_index;
  int spin_weight;
  string name;
}
variable_desc;

typedef struct
{
  int n_vars;
  variable_desc *vars;
}
variables_desc;

static void fill_variable(int idx, const char *optstring, void *callback_arg)
{
  assert(idx >= 0);
  assert(callback_arg != 0);

  variables_desc *vs = (variables_desc * ) callback_arg;

  assert(vs->n_vars < max_vars); // Too many variables in the variables list
  variable_desc *v = &vs->vars[vs->n_vars];

  v->index = idx;

  // Default values if there is no option string or if the options are
  // not present
  v->imag_index = -1;
  v->spin_weight = 0;
  v->name = string(CCTK_VarName(v->index));

  if (optstring != 0)
  {
    int table = Util_TableCreateFromString(optstring);

    if (table >= 0)
    {
      const int buffer_length = 256;
      char buffer[buffer_length];
      
      Util_TableGetInt(table, &v->spin_weight , "sw");
/////////////////////////////////////////////////////////////
CCTK_VInfo(CCTK_THORNSTRING,"spinweight %d", v->spin_weight);
/////////////////////////////////////////////////////////////
      if (Util_TableGetString(table, buffer_length, buffer , "cmplx") >= 0)
      {
        v->imag_index = CCTK_VarIndex(buffer);
      }
      Util_TableGetString(table, buffer_length, buffer , "name");
      v->name = string(buffer);
    }
  }
  vs->n_vars++;
}

static void parse_variables_string(const string &var_string, variable_desc v[max_vars], int *n_variables)
{
  variables_desc  vars;

  vars.n_vars = 0;
  vars.vars = v;

  int ierr = CCTK_TraverseString(var_string.c_str(), fill_variable, &vars, CCTK_GROUP_OR_VAR);
  assert(ierr > 0);

  *n_variables = vars.n_vars;
}

static void output_mode(CCTK_ARGUMENTS, const variable_desc *v, CCTK_REAL rad, 
                     CCTK_REAL real_lm, CCTK_REAL imag_lm, int l, int m)
{
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS

  if (CCTK_MyProc(cctkGH) == 0)
  {
    ostringstream name;
    name << "mp_" << v->name << "_l" << l << "_m" << m <<
      "_r" << setiosflags(ios::fixed) << setprecision(2) <<  rad << ".asc";
    Multipole_OutputComplexToFile(CCTK_PASS_CTOC, name.str(), real_lm, imag_lm);
  }
}

static void output_1D(CCTK_ARGUMENTS, const variable_desc *v, CCTK_REAL rad, 
                      CCTK_REAL *th, CCTK_REAL *ph,
                      CCTK_REAL *real, CCTK_REAL *imag, int array_size)
{
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS

  if (CCTK_MyProc(cctkGH) == 0)
  {
    if (out_1d_every != 0 && cctk_iteration % out_1d_every == 0)
    {
      ostringstream real_base;
      real_base << "mp_" << string(CCTK_VarName(v->index)) << "_r" << setiosflags(ios::fixed) << setprecision(2) << rad;
      Multipole_Output1D(CCTK_PASS_CTOC, real_base.str()+string(".th.asc"), array_size, th, ph, mp_theta, real);
      Multipole_Output1D(CCTK_PASS_CTOC, real_base.str()+string(".ph.asc"), array_size, th, ph, mp_phi, real);

      if (v->imag_index != -1)
      {
        ostringstream imag_base;
        imag_base << "mp_" << string(CCTK_VarName(v->imag_index)) << "_r" << setiosflags(ios::fixed) << setprecision(2) << rad;
        Multipole_Output1D(CCTK_PASS_CTOC, imag_base.str()+string(".th.asc"), array_size, th, ph, mp_theta, imag);
        Multipole_Output1D(CCTK_PASS_CTOC, imag_base.str()+string(".ph.asc"), array_size, th, ph, mp_phi, imag);
      }
    }
  }
}

bool int_in_array(int a, const int array[], int len)
{
  for (int i = 0; i < len; i++)
  {
    if (array[i] == a)
      return true;
  }
  return false;
}

int find_int_in_array(int a, const int array[], int len)
{
  for (int i = 0; i < len; i++)
  {
    if (array[i] == a)
      return i;
  }
  return -1;
}


static
void get_spin_weights(variable_desc vars[], int n_vars, int spin_weights[max_spin_weights], int *n_weights)
{
  int n_spin_weights = 0;

  for (int i = 0; i < n_vars; i++)
  {
    if (!int_in_array(vars[i].spin_weight, spin_weights, n_spin_weights))
    {
      assert(n_spin_weights < max_spin_weights);
      spin_weights[n_spin_weights] = vars[i].spin_weight;
      n_spin_weights++;
    }
  }
  *n_weights = n_spin_weights;
}

// For backward compatibility we allow the user to set l_mode instead
// of l_max, but if it is left at the default of -1, l_max is used.
static int get_l_max()
{
  DECLARE_CCTK_PARAMETERS;
  return l_mode == -1 ? l_max : l_mode;
}

static
void setup_harmonics(const int spin_weights[max_spin_weights],
                     int n_spin_weights, int lmax,
                     CCTK_REAL th[], CCTK_REAL ph[], int array_size,
                     CCTK_REAL *reY[max_spin_weights][max_l_modes][max_m_modes],
                     CCTK_REAL *imY[max_spin_weights][max_l_modes][max_m_modes])
{
  for (int si = 0; si < max_spin_weights; si++)
  {
    for (int l = 0; l < max_l_modes; l++)
    {
      for (int mi = 0; mi < max_m_modes; mi++)
      {
        reY[si][l][mi] = 0;
        imY[si][l][mi] = 0;
      }
    }
  }
  for (int si = 0; si < n_spin_weights; si++)
  {
    int sw = spin_weights[si];

    for (int l=0; l <= lmax; l++)
    {
      for (int m=-l; m <= l; m++)
      {
        reY[si][l][m+l] = new CCTK_REAL[array_size];
        imY[si][l][m+l] = new CCTK_REAL[array_size];

        Multipole_HarmonicSetup(sw, l, m, array_size, th, ph,
                                reY[si][l][m+l], imY[si][l][m+l]);
      }
    }
  } 
}

extern "C" void Multipole_ParamCheck(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_PARAMETERS;
  DECLARE_CCTK_ARGUMENTS;

  if (l_mode != -1)
  {
    CCTK_WARN(CCTK_WARN_ALERT, "The parameter l_mode is deprecated. Use l_max instead.  For compatibility, l_max = l_mode is being used.");
  }

  if (!CCTK_Equals(mode_type, "deprecated"))
  {
    CCTK_WARN(CCTK_WARN_ALERT, "The parameter mode_type is deprecated and is no longer used.  All modes will be computed.");
  }

  if (l_min != -1)
  {
    CCTK_WARN(CCTK_WARN_ALERT, "The parameter l_min is deprecated and is no longer used.  Modes from l = 0 will be computed.");
  }

  if (m_mode != -100)
  {
    CCTK_WARN(CCTK_WARN_ALERT, "The parameter m_mode is deprecated. All m modes will be computed.");
  }
}

extern "C" void Multipole_Calc(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS

  static CCTK_REAL *xs, *ys, *zs;
  static CCTK_REAL *xhat, *yhat, *zhat;
  static CCTK_REAL *th, *ph;
  static CCTK_REAL *real = 0, *imag = 0;
  static CCTK_REAL *reY[max_spin_weights][max_l_modes][max_m_modes];
  static CCTK_REAL *imY[max_spin_weights][max_l_modes][max_m_modes];
  static variable_desc   vars[max_vars];
  static int n_variables = 0;
  static int spin_weights[max_spin_weights];
  static int n_spin_weights = 0;

  static bool initialized = false;

  int i, array_size=(ntheta+1)*(nphi+1);
  CCTK_REAL real_lm = 0.0, imag_lm = 0.0;

  if (out_every == 0 || cctk_iteration % out_every != 0)
    return;

  int lmax = get_l_max();

  assert(lmax + 1 <= max_l_modes);

  if (!initialized)
  {
    real = new CCTK_REAL[array_size];
    imag = new CCTK_REAL[array_size];
    th = new CCTK_REAL[array_size];  
    ph = new CCTK_REAL[array_size];
    xs = new CCTK_REAL[array_size];
    ys = new CCTK_REAL[array_size];
    zs = new CCTK_REAL[array_size];
    xhat = new CCTK_REAL[array_size];
    yhat = new CCTK_REAL[array_size];
    zhat = new CCTK_REAL[array_size];
  
    parse_variables_string(string(variables), vars, &n_variables);
    get_spin_weights(vars, n_variables, spin_weights, &n_spin_weights);
    Multipole_CoordSetup(ntheta, nphi, xhat, yhat, zhat, th, ph);
    setup_harmonics(spin_weights, n_spin_weights, lmax, th, ph,
                    array_size, reY, imY);
    initialized = true;
  }

  for (int v = 0; v < n_variables; v++)
  {
    //assert(vars[v].spin_weight == -2);

    int si = find_int_in_array(vars[v].spin_weight, spin_weights, n_spin_weights);
    assert(si != -1);

    for(i=0; i<nradii; i++)
    {
      // Compute x^i = r * \hat x^i
      Multipole_ScaleCartesian(ntheta, nphi, radius[i], xhat, yhat, zhat, xs, ys, zs);
      
      // Interpolate Psi4r and Psi4i
      Multipole_Interp(CCTK_PASS_CTOC, xs, ys, zs, vars[v].index, vars[v].imag_index, 
                       real, imag);
      for (int l=0; l <= lmax; l++)
      {
        for (int m=-l; m <= l; m++)
        {
          // Integrate sYlm (real + i imag) over the sphere at radius r
          Multipole_Integrate(array_size, ntheta,
                              reY[si][l][m+l], imY[si][l][m+l],
                              real, imag, th, ph,
                              &real_lm, &imag_lm);
    
          output_mode(CCTK_PASS_CTOC, &vars[v], radius[i], real_lm, imag_lm, l, m);
        }//loop over m
      }//loop over l
      output_1D(CCTK_PASS_CTOC, &vars[v], radius[i], th, ph, real, imag, array_size);
    }//loop over radii
  }//loop over variables
}