aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 1c2898a3746d680b73af1e37c8bb56c9519b4f1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%  $Header$                                                             
%
%  Thorn documentation in the latex file doc/documentation.tex 
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include 
%  pages about variables, parameters and scheduling parsed from the 
%  relevent thorn CCL files.
%  
%  This template contains guidelines which help to assure that your     
%  documentation will be correctly added to ThornGuides. More 
%  information is available in the Cactus UsersGuide.
%                                                    
%  Guidelines:
%   - Do not change anything before the line
%       % START CACTUS THORNGUIDE",
%     except for filling in the title, author, date etc. fields.
%        - Each of these fields should only be on ONE line.
%        - Author names should be sparated with a \\ or a comma
%   - You can define your own macros, but they must appear after
%     the START CACTUS THORNGUIDE line, and must not redefine standard 
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations', 
%     'references', and 'image' names should conform to the following 
%     convention:          
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and 
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphix package. 
%     More specifically, with the "includegraphics" command. Do
%     not specify any graphic file extensions in your .tex file. This 
%     will allow us (later) to create a PDF version of the ThornGuide
%     via pdflatex. |
%   - References should be included with the latex "bibitem" command. 
%   - Use \begin{abstract}...\end{abstract} instead of \abstract{...}
%   - Do not use \appendix, instead include any appendices you need as 
%     standard sections. 
%   - For the benefit of our Perl scripts, and for future extensions, 
%     please use simple latex.     
%
% *======================================================================* 
% 
% Example of including a graphic image:
%    \begin{figure}[ht]
%       \begin{center}
%          \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
%       \end{center}
%       \caption{Illustration of this and that}
%       \label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999), 
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================* 

% If you are using CVS use this line to give version information
% $Header$

\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a 
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/ThornGuide/cactus}

\begin{document}

% The author of the documentation
\author{Ian Hawke} 

% The title of the document (not necessarily the name of the Thorn)
\title{Method of Lines}

% the date your document was last changed, if your document is in CVS, 
% please use:
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here 
%   \def\mydef etc

%
% The following is taken from cactusdevcvs/Cactus/doc/cactus.sty v
% 1.3. Note that the included package doesn't contain this (it's
% doc/ThornGuide/cactus.sty).
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
% Alternate environments/macros to define function descriptions
% (can/should be used to replace CCTKFunc environment)
% Jonathan Thornburg, 10 Nov 2001, revised 26 Mar 2002 & 3 Apr 2002
%
% Usage:
%       \begin{FunctionDescription}{name}
%       \label{label}
%       Synopsis for this function                      (running text rules)
%
%       \begin{SynopsisSection}
%       \begin{Synopsis}{C}
%       text of C function synopsis                     (running text rules)
%       \end{Synopsis}
%       \begin{Synopsis}{Fortran}
%       text of Fortran function synopsis               (running text rules)
%       \end{Synopsis}
%       \end{SynopsisSection}
%
%       \begin{ResultSection}
%       \begin{ResultNote}
%       optional note to go at the beginning of all results
%                                                       (running text rules)
%       \end{ResultNote}
%       \begin{Result}{name or value (automatically in \tt font)}
%       desription of what the result means in general,
%       or of what this particular result value means   (running text rules)
%       \end{Result}
%       \end{ResultSection}
%
%       \begin{ParameterSection}
%       \begin{Parameter}{name (automatically in \tt font)}
%       desription of parameter                         (running text rules)
%       \end{Parameter}
%       \begin{Parameter}{name2 (automatically in \tt font)}
%       desription of another parameter                 (running text rules)
%       \end{Parameter}
%       \end{ParameterSection}
%
%       \begin{Discussion}
%       (note that there is no "DiscussionSection" environment!)
%       discussion                                      (running text rules)
%
%       another paragraph of discussion                 (running text rules)
%
%       yet another paragraph of discussion             (running text rules)
%       \end{Discussion}
%
%       \begin{SeeAlsoSection}
%       \begin{SeeAlso}{name (automatically in \tt font)
%       cross-references to other function of that name (running text rules)
%       \end{SeeAlso}
%       \begin{SeeAlso}{name2 (automatically in \tt font)
%       cross-references to another function            (running text rules)
%       \end{SeeAlso}
%       \end{SeeAlsoSection}
%
%       \begin{ErrorSection}
%       \begin{Error}{error\_code (automatically in \tt font)}
%       description of what this error code means       (running text rules)
%       \end{Error}
%       \begin{Error}{error\_code2 (automatically in \tt font)}
%       description of what next error code means       (running text rules)
%       \end{Error}
%       \end{ErrorSection}
%
%       \begin{ExampleSection}
%       \begin{Example}{C}
%       example C code                                  (running text rules)
%       \end{Example}
%       \begin{Example}{Fortran}
%       example Fortran code                            (running text rules)
%       \end{Example}
%       \end{ExampleSection}
%
% For arguments which are automatically in \tt font, \tt may be used
% to switch back to normal Roman font (eg for a numerical value), and
% $...$ may be used for math mode (eg  ($\ge 0$)  to mark a result
% which is always non-negative).
%
% Each "running text rules" item is the body of a latex environment,
% so it may include multiple lines or even paragraphs.  Normally
% underscore must be escaped (\_), but  \verb|...|  and/or
%       \begin{verbatim}
%       ...
%       \end{verbatim}
% or similar constructs (which can't be used inside a macro argument)
% may also be used (in which case _ { } \ etc need not be escaped).
%
% All the subsections are optional.
%
% Bugs:
% - It would be nice if we could avoid having to escape underscore
%   within arguments.
% - Error checking: if you have to ask, there isn't enough for you! :)
% - There are no controls to prevent a page break falling between the
%   line "C" or "Fortran", and an immediately following example generated
%   by the Example subenvironment.  In fact, LaTeX seems to like doing
%   this. :(
% - It would be nice to have a "...continued" legend at the bottom of
%   all but the last page of a multi-page description.
% - The running header giving the function name, only appears for the
%   first page of a multi-page description.
% - In some ideal world, "See Also" would generate pdf hotlinks.
% - The horizontal spacing is ugly in a ResultNote environment, and it's
%   really *really* ugly if the note spans multiple lines of text. :(
% - There are often unwanted one-horizontal-space indentations at
%   the start of items; I don't know how to get rid of these. :(
%   
\newenvironment{FunctionDescription}[1]
{
\newpage
\noindent{\t #1}
\vskip1mm
\hrule 
\vskip3mm
%
% We define all the subenvironments inside the main one, so they won't
% interfere with any conflicting global definitions.
%
\newenvironment{FunctionDescriptionEntry}
               {%%%
               \begin{list}%%%
                     {}%%%
                     {%%%
                     \renewcommand{\makelabel}{\Lentrylabel}%%%
                     \setlength{\topsep}{0ex}%%%
                     \setlength{\partopsep}{0ex}%%%
                     \setlength{\itemsep}{0ex}%%%
                     \setlength{\labelwidth}{8em}%%%
                     \setlength{\leftmargin}{\labelwidth+\labelsep}%%%
                     \setlength{\itemindent}{0em}%%%
                     \setlength{\listparindent}{0em}%%%
                     }%%%
               }%%%
               {\end{list}}%%%
\newenvironment{FunctionDescriptionWideEntry}
               {%%%
               \begin{list}%%%
                     {}%%%
                     {%%%
                     \renewcommand{\makelabel}{\Lentrylabel}%%%
                     \setlength{\topsep}{0ex}%%%
                     \setlength{\partopsep}{0ex}%%%
                     \setlength{\itemsep}{0ex}%%%
                     \setlength{\labelwidth}{16em}%%%
                     \setlength{\leftmargin}{\labelwidth+\labelsep}%%%
                     \setlength{\itemindent}{0em}%%%
                     \setlength{\listparindent}{0em}%%%
                     }%%%
               }%%%
               {\end{list}}%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
\newenvironment{SynopsisSection}
               {%%%
               \par\noindent{\bf Synopsis}
               \begin{FunctionDescriptionEntry}
               }%%%
               {\end{FunctionDescriptionEntry}}
\newenvironment{Synopsis}[1]{\item[\bf ##1]}{}
%
\newenvironment{ResultSection}
               {%%%
               \par\noindent{\bf Result}
               \begin{FunctionDescriptionEntry}
               }%%%
               {\end{FunctionDescriptionEntry}}
\newenvironment{ResultNote}{\item[]\hskip-\leftmargin{}}{}
\newenvironment{Result}[1]{\item[\tt ##1]}{}
%
\newenvironment{ParameterSection}
               {%%%
               \par\noindent{\bf Parameters}
               \begin{FunctionDescriptionEntry}
               }%%%
               {\end{FunctionDescriptionEntry}}
\newenvironment{Parameter}[1]{\item[\tt ##1]}{}
%
\newenvironment{Discussion}%%%
               {%%%
               \par\noindent{\bf Discussion}
               \begin{FunctionDescriptionEntry}
               \item[]
               }%%%
               {\end{FunctionDescriptionEntry}}
%
\newenvironment{SeeAlsoSection}
               {%%%
               \par\noindent{\bf See Also}
               \begin{FunctionDescriptionWideEntry}
               }%%%
               {\end{FunctionDescriptionWideEntry}}
\newenvironment{SeeAlso}[1]{\item[\tt ##1]}{}
%
\newenvironment{ErrorSection}
               {%%%
               \par\noindent{\bf Errors}
               \begin{FunctionDescriptionWideEntry}
               }%%%
               {\end{FunctionDescriptionWideEntry}}
\newenvironment{Error}[1]{\item[\tt ##1]}{}
%
\newenvironment{ExampleSection}
               {%%%
               \par\noindent{\bf Examples}
               \begin{FunctionDescriptionEntry}
               }%%%
               {\end{FunctionDescriptionEntry}}
\newenvironment{Example}[1]{\item[\bf ##1]}{}
%
}%%%    % end of \begin{FunctionDescription} expansion
{%%%
}%%%    % \end{FunctionDescription} expansion is empty

% Add an abstract for this thorn's documentation
\begin{abstract}
  The Method of Lines is a way of separating the time integration from
  the rest of an evolution scheme. This thorn is intended to take care
  of all the bookwork and provide some basic time integration methods,
  allowing for easy coupling of different thorns.
\end{abstract}

% The following sections are suggestive only.
% Remove them or add your own.

% \section{Introduction}

% \section{Physical System}

% \section{Numerical Implementation}

% \section{Using This Thorn}

% \subsection{Obtaining This Thorn}

% \subsection{Basic Usage}

% \subsection{Special Behaviour}

% \subsection{Interaction With Other Thorns}

% \subsection{Examples}

% \subsection{Support and Feedback}

% \section{History}

% \subsection{Thorn Source Code}

% \subsection{Thorn Documentation}

% \subsection{Acknowledgements}

\section{Purpose}
\label{sec:purpose}

The Method of Lines (MoL) converts a (system of) partial differential
equation(s) into an ordinary differential equation containing some
spatial differential operator. As an example, consider writing the
hyperbolic system of PDE's
\begin{equation}
  \label{eq:mol1}
  \partial_t {\bf q} + {\bf A}^i({\bf q}) \partial_i {\bf B}({\bf q})
  = {\bf s}({\bf q})
\end{equation}
in the alternative form
\begin{equation}
  \label{eq:mol2}
  \partial_t {\bf q} = {\bf L}({\bf q}),
\end{equation}
which (assuming a given discretization of space) is an ODE.

Given this separation of the time and space discretizations, well
known stable ODE integrators such as Runge-Kutta can be used to do the
time integration. This is more modular (allowing for simple extensions
to higher order methods), more stable (as instabilities can now only
arise from the spatial discretization or the equations themselves) and
also avoids the problems of retaining high orders of convergence when
coupling different physical models.

MoL can be used for hyperbolic, parabolic and even elliptic problems
(although I definitely don't recommend the latter). As it currently
stands it is set up for systems of equations in the first order type
form of equation~(\ref{eq:mol2}). If you want to implement a
multilevel scheme such as leapfrog it is not obvious to me that MoL is
the thing to use. However if you have lots of thorns that you want to
interact, for example ADM\_BSSN and a hydro code plus maybe EM or a
scalar field, and they can easily be written in this sort of form,
then you probably want to use MoL.

This thorn is meant to provide a simple interface that will implement
the MoL inside Cactus as transparently as possible. It will initially
implement only the optimal Runge-Kutta time integrators (which are TVD
up to RK3, so suitable for hydro) up to fourth order and iterated
Crank Nicholson. All of the interaction with the MoL thorn should
occur directly through the scheduler. For example, all synchronization
steps should now be possible at the schedule level. This is essential
for interacting cleanly with different drivers, especially to make
Mesh Refinement work.

For more information on the Method of Lines the most comprehensive
references are the works of Jonathan
Thornburg~\cite{AlphaThorns_MoL_Thornburg93,AlphaThorns_MoL_Thornburg99}
- see especially section 7.3 of the thesis. From the CFD viewpoint the
review of ENO methods by Shu,~\cite{AlphaThorns_MoL_Shu99} has some
information. For relativistic fluids the paper of Neilsen and
Choptuik~\cite{AlphaThorns_MoL_Neilsen00} is also quite good. For Ian
Hawke's viewpoint either see below or contact by email.

\section{How to use}
\label{sec:use}


\subsection{Thorn users}
\label{sec:useruse}

For those who used the old version of MoL, this version is
unfortunately slightly more effort to use. That is, for most methods
you'll now have to set 4 parameters instead of just one. 

If you already have a thorn that uses the method of lines, then there
are four main parameters that are relevant to change the integration
method. The keyword {\tt MoL\_ODE\_Method} chooses between the
different methods. Currently supported are {\tt RK2}, {\tt ICN} and
{\tt Generic}. These are second order Runge-Kutta, Iterative Crank
Nicholson, and the generic Shu-Osher type Runge-Kutta methods. To
switch between the different types of generic methods there is also
the keyword {\tt Generic\_Type} which is currently restricted to {\tt
  RK} for the standard TVD Runge-Kutta methods (first to fourth order)
and {\tt ICN} for the implementation of the Iterative Crank Nicholson
method in generic form.

The parameter {\tt MoL\_Intermediate\_Steps} controls the number of
intermediate steps for the ODE solver. For the generic Runge-Kutta
solvers it controls the order of accuracy of the method.  For the {\tt
  ICN} methods this parameter controls the number of iterations taken,
which {\bf does not check for stability}. This parameter defaults to
3.

The parameter {\tt MoL\_Num\_Scratch\_Levels} controls the amount of
scratch space used. If this is insufficient for the method selected
there will be an error at parameter checking time. This parameter
defaults to 0, as no scratch space is required for the efficient ICN
and Runge-Kutta 2 solvers. For the generic solvers this must be at
least {\tt MoL\_Intermediate\_Steps - 1}.

A final parameter is {\tt MoL\_Memory\_Always\_On} which switches on
memory for the scratch space always if true and only during evolution
if false. This defaults to true for speed reasons; the memory gains
are likely to be limited unless you're doing something very memory
intensive at initialization or analysis.

\subsection{Thorn writers}
\label{sec:writeruse}

To port an existing thorn using the method of lines, or to write a new
thorn using it, should hopefully be relatively simple. As an example,
within the MoL arrangement is WaveMoL which duplicates the WaveToy
thorn given by CactusWave in a form suitable for use by MoL. In this
section, ``the thorn'' will mean the user thorn doing the physics.

We start with some terminology. Grid functions are split into four
cateogories.
\begin{enumerate}
\item The first are those that are evolved using a MoL form. That is,
  a right hand side is calculated and the variable updated using
  it. These we call {\it evolved} variables.
\item The second category are those variables that are set by a thorn
  at every intermediate step of the evolution, usually to respect the
  constraints. Examples of these include the primitive variables in a
  hydrodynamics code. Another example would be the gauge variables if
  these were set by constraints at every intermediate step (which is
  slightly artificial; the usual example would be the use of maximal
  slicing, which is only applied once every $N$ complete steps). These
  are known as {\it constrained} variables.
\item The third category are those variables that a thorn depends on
  but does not set or evolve. An example would include the metric
  terms considered from a thorn evolving matter. Due to the way that
  MoL deals with these, they are known as {\it Save and Restore}
  variables.
\item The final category are those variables that do not interact with
  MoL. These would include temporary variables for analysis or setting
  up the initial data. These can safely be ignored.
\end{enumerate}

MoL needs to know every GF that falls in one of the first three
groups. If a GF is evolved by one thorn but is a constrained variable
in another (for example, the metric in full GR Hydro) then each thorn
should register the function as they see it. For example, the hydro
thorn will register the metric as a Save and Restore variable and the
spacetime thorn will register the metric as an evolved variable. The
different variable categories are given the priority evolved,
constrained, Save and Restore. So if a variable is registered as
belonging in two different categories, it is always considered by MoL
to belong to the category with the highest priority.

MoL needs to know the total number of GFs in each category \textit{at
  parameter time}. To do this, your thorn needs to use some
accumulator parameters from MoL. As an example, here are the paramters
from WaveMoL:
\begin{verbatim}
shares: MethodOfLines

USES CCTK_INT MoL_Num_Evolved_Vars
USES CCTK_INT MoL_Num_Constrained_Vars
USES CCTK_INT MoL_Num_SaveAndRestore_Vars

restricted:

CCTK_INT WaveMoL_MaxNumEvolvedVars \
    "The maximum number of evolved variables used by WaveMoL" \
    ACCUMULATOR-BASE=MethodofLines::MoL_Num_Evolved_Vars
{
  5:5           :: "Just 5: phi and the four derivatives"
} 5

CCTK_INT WaveMoL_MaxNumConstrainedVars \
    "The maximum number of constrained variables used by WaveMoL" \
    ACCUMULATOR-BASE=MethodofLines::MoL_Num_Constrained_Vars
{
  0:1           :: "A small range, depending on testing or not"
} 1

CCTK_INT WaveMoL_MaxNumSandRVars \
    "The maximum number of save and restore variables used by WaveMoL" \
    ACCUMULATOR-BASE=MethodofLines::MoL_Num_SaveAndRestore_Vars
{
  0:1           :: "A small range, depending on testing or not"
} 1
\end{verbatim}
This should give the \textit{maximum} number of variables that your
thorn will register.

Every thorn should register every grid function that it uses even if
you expect it to be registered again by a different thorn. For
example, a hydro thorn would register the metric variables as Save and
Restore, whilst the spacetime evolution thorn would register them as
evolved (in ADM) or constrained (in ADM\_BSSN), both of which have
precedence. To register your GFs with MoL schedule a routine in the
bin {\tt MoL\_Register} which just contains the relevant function
calls.  For an evolved variable the GF corresponding to the update
term (${\bf L}({\bf q})$ in equation~(\ref{eq:mol2})) should be
registered at the same time. The appropriate functions are given in
section~\ref{sec:molfns}.

These functions are provided using function aliasing. For details on
using function aliasing, see sections B10.5 and F2.2.3 of the
UsersGuide. In this specific case, you simply add the following lines
to your \texttt{interface.ccl}:
\begin{verbatim}
##########################################
### PROTOTYPES - DELETE AS APPLICABLE! ###
##########################################

CCTK_INT FUNCTION MoLRegisterEvolved(CCTK_INT EvolvedIndex, CCTK_INT RHSIndex)
CCTK_INT FUNCTION MoLRegisterConstrained(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex, \
                                          CCTK_INT RHSIndex)
CCTK_INT FUNCTION MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLChangeToEvolved(CCTK_INT EvolvedIndex, CCTK_INT RHSIndex)
CCTK_INT FUNCTION MoLChangeToConstrained(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLChangeToNone(CCTK_INT RemoveIndex)

#############################################
### USE STATEMENT - DELETE AS APPLICABLE! ###
#############################################

USES FUNCTION MoLRegisterEvolved
USES FUNCTION MoLRegisterConstrained
USES FUNCTION MoLRegisterSaveAndRestore
USES FUNCTION MoLRegisterEvolvedGroup
USES FUNCTION MoLRegisterConstrainedGroup
USES FUNCTION MoLRegisterSaveAndRestoreGroup
USES FUNCTION MoLChangeToEvolved
USES FUNCTION MoLChangeToConstrained
USES FUNCTION MoLChangeToSaveAndRestore
USES FUNCTION MoLChangeToNone
\end{verbatim}

Having done that, one routine (or group of routines) which we'll here
call {\tt Thorn\_CalcRHS} must be defined. This does all the finite
differencing that you'd usually do, applied to ${\bf q}$, and finds
the right hand sides which are stored in ${\bf L}$. This routine
should be scheduled in {\tt MoL\_CalcRHS}. The precise order that
these are scheduled should not matter, because no updating of any of
the user thorns ${\bf q}$ will be done until after all the RHSs are
calculated. {\bf Important note:} all the finite differencing must be
applied to the most recent time level ${\bf q}$ and not to the
previous time level ${\bf q}_p$ as you would normally do. Don't worry
about setting up the data before the calculation, as MoL will do that
automatically.

Finally, if you have some things that have to be done after each
update to an intermediate level, these should be scheduled in {\tt
  MoL\_PostStep}. Examples of things that need to go here include the
recalculation of primitive variables for hydro codes, the application
of boundary conditions\footnote{It is possible to alter the
  calculation of {\bf L} so that boundary conditions are automatically
  updated and do not need setting. This is slightly tricksy. For an
  example of how this would work see the new radiative boundary
  condition in ADM\_BSSN. For more on this see section 7.3.4
  of~\cite{AlphaThorns_MoL_Thornburg93}.}, the solution of elliptic
equations (although this would be a very expensive place to solve
them, some sets of equations might require the updating of some
variables by constraints in this fashion). When applying boundary
conditions the cleanest thing to do is to write a routine applying the
symmetries to the appropriate GFs and, when calling it from the
scheduler, adding the {\tt SYNC} statement to the appropriate groups.
An example is given by the routine {\tt WaveToyMoL\_Boundaries} in
thorn WaveMoL.

Points to note. The thorn routine {\tt Thorn\_CalcRHS} does not need
to know and in fact should definitely not know where precisely in the
MoL step it is. It just needs to know that it is receiving {\it some}
intermediate data stored in the GFs ${\bf q}$ and that it should
return the RHS ${\bf L}({\bf q})$. All the book-keeping to ensure that
it is passed the correct intermediate state at that the GFs contain
the correct data at the end of the MoL step will be dealt with by the
MoL thorn and the flesh. Also the synchronization of grids across
separate processors will be dealt with by the MoL thorn and the flesh.

\section{Example}
\label{sec:example}

As a fairly extended example of how to use MoL I'll outline how
ADM\_BSSN works in this context. The actual implementation of this is
given in the thorn {\tt AEIDevelopment/BSSN\_MoL}. 

As normal the required variables are defined in the {\tt
  interface.ccl} file, together with the associated source terms. For
example, the conformal factor and source are defined by

\begin{verbatim}
real ADM_BSSN_phi type=GF timelevels=2
{
  ADM_BS_phi
} "ADM_BSSN_phi"

real ADM_BSSN_sources type=GF
{
...,
  adm_bs_sphi,
...
}
\end{verbatim}
Also in this file we write the function aliasing prototypes.

Once the sources are defined the registration with MoL is required,
for which the essential file is {\tt MoLRegister.c}. In the ADM\_BSSN
system the standard metric coefficients $g_{ij}$ are not evolved, and
neither are the standard extrinsic curvature components $K_{ij}$.
However these are used by ADM\_BSSN in a number of places, and are
calculated from evolved quantities at the appropriate points.  In the
MoL terminology these variables are {\it constrained}. As the
appropriate storage is defined in thorn ADMBase, the actual calls have
the form

\begin{verbatim}
 ierr += MoLRegisterConstrained(CCTK_VarIndex("ADMBase::kxx"));
\end{verbatim}

\noindent The actual evolved variables include things such as the
conformal factor. This, and the appropriate source term, is defined in
thorn ADM\_BSSN, and so the call has the form

\begin{verbatim} 
 ierr += MoLRegisterEvolved(CCTK_VarIndex("adm_bssn::ADM_BS_phi"),
                            CCTK_VarIndex("adm_bssn::adm_bs_sphi")); 
\end{verbatim}


As well as the evolved variables, and those constrained variables such
as the metric, there are the gauge variables. Precisely what status
these have depends on how they are set. If harmonic or 1+log slicing
is used then the lapse is evolved:

\begin{verbatim}
 ierr += MoLRegisterEvolved(CCTK_VarIndex("ADMBase::alp"),
                            CCTK_VarIndex("adm_bssn::adm_bs_salp")); 
\end{verbatim}

\noindent If maximal or static slicing is used then the lapse is a
constrained variable\footnote{Note that this is actually a bit of a
  hack. The rational for {\it Save and Restore} variables was to deal
  with maximal slicing. However it turned out that I hadn't thought it
  through correctly and that the treatment for constrained variables
  was required.}:

\begin{verbatim}
 ierr += MoLRegisterConstrained(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}

\noindent Finally, if none of the above apply we assume that the lapse
is evolved in some unknown fashion, and so it must be registered as a
Save and Restore variable:

\begin{verbatim}
 ierr += MoLRegisterSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}

However, it is perfectly possible that we may wish to change how we
deal with the gauge during the evolution. This is dealt with in the
file {\tt PreLoop.F}. If the slicing changes then the appropriate
routine is called. For example, if we want to use 1+log evolution then
we call 

\begin{verbatim}
 call CCTK_VarIndex(lapseindex,"ADMBase::alp")
 call CCTK_VarIndex(lapserhsindex,"adm_bssn::adm_bs_salp")
 ierr = ierr + MoLChangeToEvolved(lapseindex, lapserhsindex)
\end{verbatim}

\noindent It is not required to tell MoL what the lapse is changing
{\it from}, or indeed if it is changing at all; MoL will work this out
for itself.

Finally there are the routines that we wish to apply after every
intermediate step. These are {\tt ADM\_BSSN\_removetrA} which enforces
various constraints (such as the tracefree conformal extrinsic
curvature remaining trace free), {\tt ADM\_BSSN\_Boundaries} which
applies symmetry boundary conditions as well as various others (such
as some of the radiative boundary conditions). Note all the calls to
{\tt SYNC} at this point. We also convert from the updated BSSN
variables back to the standard ADM variables in {\tt
  ADM\_BSSN\_StandardVariables}, and also update the time derivative
of the lapse in {\tt ADM\_BSSN\_LapseChange}.

% \section{The gory details}
% \label{sec:gory}

% This section is more for people wishing to maintain and extend the
% code. {\bf NEEDS TOTAL REWRITE FOR MOL2}

% There are three essential parts to the MoL thorn. The first is the
% registration process where the MoL thorn is told just how many GFs it
% should be looking to integrate, and where they and their RHSs
% are. This is split into three separate routines.
% \begin{itemize}
% \item {\tt MoL\_Init\_Register} Called by the MoL thorn at {\tt
%     postinitial}.  Initializes the number of variables to the maximum
%   possible number (given by {\tt CCTK\_NumVars()}). Sets up two arrays
%   of pointers to GFs (CCTK\_Real**), one for the data ({\tt qindex})
%   and one for the RHSs ({\tt qrhsindex}). It also sets up index arrays
%   for the primitive and dependent variables.
% \item {\tt MoL\_Register} This group lets MoL knows where all the data
%   is and should contain all the user thorn calls to {\tt
%     MoL\_RegisterVar()}. This just associates the index of the
%   GFs to be evolved with their RHSs, and increments the number of
%   variables to be evolved. Also contains the routines to register the
%   primitive and dependent variables.
% \item {\tt MoL\_End\_Register} This could be used to reallocate the
%   index arrays to the correct size. For the moment I've decided that
%   the tiny memory gain is outweighed by the possiblity of problems
%   using realloc.
% \end{itemize}

% The second part of the MoL thorn sets up all the scratch space and the
% parameters for the generalized RK routines. This is also scheduled at
% postinitial. This contains the routines

% \begin{itemize}
% \item {\tt MoL\_SetupScratch} Sets up the scratch space. Sets the
%   scalar {\tt mol\_num\_scratch} which is the size of the required
%   scratch space from the defaults, then allocates the scratch arrays. 
% \item {\tt MoL\_RKSetup} Sets up the $\alpha$ and $\beta$ arrays for
%   the generalized Runge Kutta step. Note that as we're currently only
%   storing the most recent RHS arrays the $\beta$ arrays are single
%   index only.
% \end{itemize}

% The final part of the MoL thorn is the evolution step. This is again
% split into a number of separate routines and groups. Firstly we
% describe a single evolution step, and what MoL expects.

% By a single evolution step we here mean the execution of everything
% inside the schedule bin {\tt EVOL}. MoL expects that every GF that it
% knows about is allocated, initialized and lives at the same instant of
% computational time. MoL also expects the ghost zones and boundaries to
% be set correctly. Wherever possible the first two are checked. MoL
% expects that the driver has rotated the timelevels so that the last
% set of complete, consistent data is stored in ${\bf q}\_p$. MoL also
% knows that the dependent variables may or may not have been evolved by
% the time the MoL evolution group is executed.

% \begin{figure}[ht]
% \begin{center}
% \includegraphics[width=3cm]{MoLdia1}
% \includegraphics[width=3cm]{MoLdia2}
% \includegraphics[width=3cm]{MoLdia3}
% \end{center}
% \caption{How MoL treats the three different types of variables. The
%   MoL step is performed at evolution after the driver has rotated the
%   timelevels, which occurs right at the start of every {\tt
%     CCTK\_EVOL} step. The physics thorns expect the most recent data
%   to be at the current time level (the top solid line). So the first
%   step for most types of variable is to copy or pointer switch the
%   data from the previous time level (bottom solid line) where the most
%   recent data exists after rotation. Figure (a) shows the {\it
%     evolved} variables.  At each intermediate step the data is updated
%   into the current time level and, if necessary, stored in scratch
%   space.  Figure (b) shows the {\it primitive} variables. As these are
%   set by the physics thorns into the current time level all that is
%   required is the initial copy. Figure (c) shows the {\it dependent}
%   variables for which we cannot know whether these variables are
%   evolved before or after MoL at evolution, and hence whether the
%   current data is already filled before MoL starts, we must store the
%   current data in scratch space first, then do the copy from the
%   previous level, and then at the end of the MoL step return the data
%   to the initial state.}
% \label{MoLvariables}
% \end{figure}

% MoL plays around with the timelevels during the intermediate
% steps. This is required so that the latest level in the MoL evolution
% is always stored in the same place so that the user thorns can easily
% access them. This place is the current time level ${\bf q}$. This
% ensures that MoL works correctly with all the standard boundary
% condition routines and minimizes the effort of porting non timelevel
% aware thorns (I hope!).

% An outline of the schedule is as follows:
% \begin{equation}
%   \label{eq:schedoutline}
%   \begin{array}[l]{l}
%     \texttt{MoL\_StartStep} \\
%     \texttt{MoL\_Step WHILE counter \{} \\
%     \begin{array}[l]{l}
%       \texttt{MoL\_CalcRHS \{ \}} \\
%       \texttt{MoL\_Add} \\
%       \texttt{MoL\_PostStep \{ \}} \\
%     \end{array} \\
%     \texttt{\}} \\
%     \texttt{MoL\_EndStep \{ \}}
%   \end{array}
% \end{equation}

% Each different type of variable is treated slightly differently by
% MoL. Each is assumed to have at least 2 timelevels (although this is
% checked, a fatal error occurs otherwise). Before entering the loop
% over the intermediate steps MoL will first copy (pointer switch?) the
% data into the current time levels. Before doing this the current
% timelevel of any {\it dependent} variables is copied to scratch space,
% as it may have already been updated. During the loop over the
% intermediate steps only the {\it evolved} variables are directly
% altered by MoL. When all user thorns have given their right hand side
% GFs the evolved variables are updated into the current time level.
% This data may also be copied to scratch space if required for later.
% The primitive variables are assumed to be set by the user thorn,
% either in the calculation of the RHS or during {\tt MoL\_PostStep} at
% the end of each intermediate step. The dependent variables are assumed
% to remain completely unchanged. After all the intermediate steps the
% data in the current and previous timelevels is ``correct'' and
% consistent for the evolved and the temporary variables. The data for
% the current timelevel for the dependent variables is recovered from
% scratch space. Precisely how the different variables are
% treated is shown in figure~\ref{MoLvariables}.

% \begin{itemize}
% \item {\tt MoL\_StartStep} This ensures that the integer keeping
%     track of where we are in the MoL step is set to the correct
%     value. It also copies the previous data ${\bf q}_p$ into the
%     current position ${\bf q}$ ready for the first step.
% \item {\tt MoL\_Step} This is the main part of the thorn. The scheduler
%   allows us to loop over this group the correct number of times to
%   complete a single Cactus evolution step. Contained within this group
%   are:
%   \begin{itemize}
%   \item {\tt MoL\_CalcRHS} The schedule group within which the user
%     thorns will schedule their routines. These routines should
%     calculate the GFs ${\bf L}({\bf q})$. The order these routines are
%     scheduled within this group should not matter.
%   \item {\tt MoL\_Add} This step performs the time integration
%     depending on where in the MoL step we are. Updates directly into
%     the current GF and copies to the scratch space if required.
%   \item {\tt MoL\_PostStep} Another schedule group within which the
%     user thorns can schedule such things as primitive variable
%     recovery, boundary conditions, etc.
%   \item {\tt MoL\_End} Just alters the scalar tracking the position in
%     the MoL loop.
%   \end{itemize}
% \end{itemize}

% Finally, there are the routines {\tt MoL\_FreeScratch} and {\tt
%   MoL\_RKFree} which free up the memory that was explicitly taken. For
% the moment these routines are scheduled at postevol.


% \section{Adding new numerical integrators}
% \label{sec:newmeth}

% There are two obvious ways of adding new ODE integrators into MoL. The
% first is to follow the route used in the efficient RK2 and ICN
% methods. That is, you let the underlying infrastructure define the
% scratch space but you do all the addition yourself. It's probably best
% if you model your integrator on one of the efficient routines to start
% with. 

% The alternative is to use the generic integrator. To use this you just
% need to add the correct set of $\alpha$ and $\beta$ coefficients so
% that the generic routine can perform the additions. You'll also have
% to set up the keyword parameters and so on.

% \section{To do list}
% \label{sec:todo}

% \begin{itemize}
% \item The documentation must be improved, especially inside the code
%   itself. 
% \item Errors are currently not handled well (if at all). This must be
%   fixed.
% \item A test suite is required. I'm not sure how to do this without
%   using WaveMoL, but we could try.
% \item In order to make the code work with a Mesh Refinement driver,
%   the scratch spaces must be changed to be grid functions. This is
%   currently impossible, but Tom Goodale will add the appropriate bits
%   to the flesh to make it possible to do. At that point the entire
%   code will probably be rewritten.
% \end{itemize}

\section{Functions provided by MoL}
\label{sec:molfns}

All the functions listed below return error codes in theory. However
at this current point in time they always return 0 (success). Any
failure to register or change a GF is assumed fatal and MoL will
issue a level 0 warning stopping the code. This may change in future,
in which case negative return values will indicate errors.

These are all \textit{aliased} functions. You can get the functions
directly through header files, but this feature may be phased
out. Using function aliasing is the recommended method.

\begin{FunctionDescription}{MoLRegisterEvolved}
  \label{MoLRegisterEvolved}
  
  Tells MoL that the given GF is in the evolved category with the
  associated update GF.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterEvolved(CCTK_INT EvolvedIndex, 
                                   CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterEvolved(CCTK_INT EvolvedIndex,
                                   CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{EvolvedIndex}
      Index of the GF to be evolved.
    \end{Parameter}
    \begin{Parameter}{RHSIndex}
      Index of the associated update GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterSaveAndRestore()}
      Register Save and Restore variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterConstrained()}
      Register constrained variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToEvolved()}
      Change a variable at runtime to be evolved.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterEvolved(CCTK_VarIndex("wavetoymol::phi"),
                          CCTK_VarIndex("wavetoymol::phirhs"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(EvolvedIndex, "wavetoymol::phi")
call CCTK_VarIndex(RHSIndex, "wavetoymol::phirhs")
ierr = MoLRegisterEvolved(EvolvedIndex, RHSIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLRegisterConstrained}
  \label{MoLRegisterConstrained}
  
  Tells MoL that the given GF is in the constrained category.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterConstrained(CCTK_INT ConstrainedIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterConstrained(CCTK_INT ConstrainedIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{ConstrainedIndex}
      Index of the constrained GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterEvolved()}
      Register evolved variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterSaveAndRestore()}
      Register Save and Restore variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToConstrained()}
      Change a variable at runtime to be constrained.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterConstrained(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(ConstrainedIndex, "ADMBase::alp")
ierr = MoLRegisterConstrained(ConstrainedIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLRegisterSaveAndRestore}
  \label{MoLRegisterSaveAndRestore}
  
  Tells MoL that the given GF is in the Save and Restore category.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{SandRIndex}
      Index of the Save and Restore GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterEvolved()}
      Register evolved variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterConstrained()}
      Register constrained variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToSaveAndRestore()}
      Change a variable at runtime to be Save and Restore.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(SandRIndex, "ADMBase::alp")
ierr = MoLRegisterSaveAndRestore(SandRIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLRegisterEvolvedGroup}
  \label{MoLRegisterEvolvedGroup}
  
  Tells MoL that the given group is in the evolved category with the
  associated update group.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex, 
                                        CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex, 
                                        CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{EvolvedIndex}
      Index of the group to be evolved.
    \end{Parameter}
    \begin{Parameter}{RHSIndex}
      Index of the associated update group.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_GroupIndex()}
      Get the group index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterSaveAndRestoreGroup()}
      Register Save and Restore variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterConstrainedGroup()}
      Register constrained variables.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterEvolvedGroup(CCTK_GroupIndex("wavetoymol::scalarevolvemol"),
                               CCTK_GroupIndex("wavetoymol::scalarevolvemolrhs"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_GroupIndex(EvolvedIndex, "wavetoymol::scalarevolvemol")
call CCTK_GroupIndex(RHSIndex, "wavetoymol::scalarevolvemolrhs")
ierr = MoLRegisterEvolvedGroup(EvolvedIndex, RHSIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLRegisterConstrainedGroup}
  \label{MoL-RegisterConstrainedGroup}
  
  Tells MoL that the given group is in the constrained category.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{ConstrainedIndex}
      Index of the constrained group.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_GroupIndex()}
      Get the group index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterEvolvedGroup()}
      Register evolved variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterSaveAndRestoreGroup()}
      Register Save and Restore variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToConstrained()}
      Change a variable at runtime to be constrained.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterConstrainedGroup(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_GroupIndex(ConstrainedIndex, "ADMBase::alp")
ierr = MoLRegisterConstrainedGroup(ConstrainedIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLRegisterSaveAndRestoreGroup}
  \label{MoL-RegisterSaveAndRestoreGroup}
  
  Tells MoL that the given group is in the Save and Restore category.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{SandRIndex}
      Index of the save and restore group.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_Register}.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_GroupIndex()}
      Get the group index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterEvolvedGroup()}
      Register evolved variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterConstrainedGroup()}
      Register constrained variables.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLRegisterSaveAndRestoreGroup(CCTK_GroupIndex("ADMBase::shift"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_GroupIndex(SandRIndex, "ADMBase::shift")
ierr = MoLRegisterSaveAndRestoreGroup(SandRIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLChangeToEvolved}
  \label{MoL-ChangeToEvolved}

  Sets a GF to belong to the evolved category, with the associated
  update GF. Not used for the initial setting.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToEvolved(CCTK_INT EvolvedIndex, 
                                   CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToEvolved(CCTK_INT EvolvedIndex, 
                                   CCTK_INT RHSIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{EvolvedIndex}
      Index of the evolved GF.
    \end{Parameter}
    \begin{Parameter}{RHSIndex}
      Index of the associated update GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_PreStep}.
    Note that this function was designed to allow mixed slicings for
    thorn ADMBase. This set of functions is largely untested and
    should be used with great care.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterEvolved()}
      Register evolved variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToSaveAndRestore()}
      Change a variable at runtime to be Save and Restore.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToConstrained()}
      Change a variable at runtime to be constrained.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLChangeToEvolved(CCTK_VarIndex("ADMBase::alp"),
                          CCTK_VarIndex("adm_bssn::adm_bs_salp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(EvolvedIndex, "ADMBase::alp")
call CCTK_VarIndex(RHSIndex,"adm_bssn::adm_bs_salp")
ierr = MoLChangeToEvolved(EvolvedIndex, RHSIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLChangeToConstrained}
  \label{MoLChangeToConstrained}
  
  Sets a GF to belong to the constrained category. Not used for the
  initial setting.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToConstrained(CCTK_INT EvolvedIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToConstrained(CCTK_INT EvolvedIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{ConstrainedIndex}
      Index of the constrained GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_PreStep}.
    Note that this function was designed to allow mixed slicings for
    thorn ADMBase. This set of functions is largely untested and
    should be used with great care.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterConstrained()}
      Register constrained variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToSaveAndRestore()}
      Change a variable at runtime to be Save and Restore.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToEvolved()}
      Change a variable at runtime to be evolved.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLChangeToConstrained(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(EvolvedIndex, "ADMBase::alp")
ierr = MoLChangeToConstrained(EvolvedIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLChangeToSaveAndRestore}
  \label{MoLChangeToSaveAndRestore}
  
  Sets a GF to belong to the Save and Restore category. Not used for the
  initial setting.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)      
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)    
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{SandRIndex}
      Index of the Save and Restore GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_PreStep}.
    Note that this function was designed to allow mixed slicings for
    thorn ADMBase. This set of functions is largely untested and
    should be used with great care.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLRegisterSaveAndRestore()}
      Register Save and Restore variables.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToEvolved()}
      Change a variable at runtime to be evolved.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToConstrained()}
      Change a variable at runtime to be constrained.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLChangeToSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(SandRIndex, "ADMBase::alp")
ierr = MoLChangeToSaveAndRestore(SandRIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}



\begin{FunctionDescription}{MoLChangeToNone}
  \label{MoLChangeToNone}
  
  Sets a GF to belong to the ``unknown'' category. Not used for the
  initial setting.

  \begin{SynopsisSection}
    \begin{Synopsis}{C}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToNone(CCTK_INT RemoveIndex)
\end{verbatim}
    \end{Synopsis}
    \begin{Synopsis}{Fortran}
\begin{verbatim}
CCTK_INT ierr = MoLChangeToNone(CCTK_INT RemoveIndex)
\end{verbatim}
    \end{Synopsis}
  \end{SynopsisSection}

  \begin{ResultSection}
    \begin{ResultNote}
      Currently if there is an error, MoL will issue a level 0
      warning. No sensible return codes exist.
    \end{ResultNote}
    \begin{Result}{\rm 0}
      success
    \end{Result}
  \end{ResultSection}

  \begin{ParameterSection}
    \begin{Parameter}{RemoveIndex}
      Index of the ``unknown'' GF.
    \end{Parameter}
  \end{ParameterSection}

  \begin{Discussion}
    Should be called in a function scheduled in {\tt MoL\_PreStep}.
    Note that this function was designed to allow mixed slicings for
    thorn ADMBase. This set of functions is largely untested and
    should be used with great care.
  \end{Discussion}

  \begin{SeeAlsoSection}
    \begin{SeeAlso}{CCTK\_VarIndex()}
      Get the GF index.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToEvolved()}
      Change a variable at runtime to be evolved.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToSaveAndRestore()}
      Change a variable at runtime to be Save and Restore.
    \end{SeeAlso}
    \begin{SeeAlso}{MoLChangeToConstrained()}
      Change a variable at runtime to be constrained.
    \end{SeeAlso}
  \end{SeeAlsoSection}

  \begin{ExampleSection}
    \begin{Example}{C}
\begin{verbatim}
ierr = MoLChangeToNone(CCTK_VarIndex("ADMBase::alp"));
\end{verbatim}
    \end{Example}
    \begin{Example}{Fortran}
\begin{verbatim}
call CCTK_VarIndex(RemoveIndex, "ADMBase::alp")
ierr = MoLChangeToNone(RemoveIndex)
\end{verbatim}
    \end{Example}
  \end{ExampleSection}

\end{FunctionDescription}

\begin{thebibliography}{9}

\bibitem{AlphaThorns_MoL_Thornburg93}
J. Thornburg.
\newblock {N}umerical {R}elativity in {B}lack {H}ole {S}pacetimes. 
\newblock Unpublished thesis, University of British Columbia.
\newblock 1993.
\newblock Available from \mbox{\tt
  http://www.aei.mpg.de/\~{}jthorn/phd/html/phd.html}. 

\bibitem{AlphaThorns_MoL_Thornburg99}
J. Thornburg.
\newblock A {3+1} {C}omputational {S}cheme for {D}ynamic {S}pherically
{S}ymmetric {B}lack {H}ole {S}pacetimes -- {II}: {T}ime {E}volution.
\newblock Preprint {\tt gr-qc/9906022}, submitted to {\em Phys. Rev.}
{\bf D}. 

\bibitem{AlphaThorns_MoL_Shu99}
C. Shu.
\newblock {H}igh {O}rder {ENO} and {WENO} {S}chemes for
{C}omputational {F}luid {D}ynamics.
\newblock In T.~J. Barth and H. Deconinck, editors {\em High-Order
  Methods for Computational Physics}. Springer, 1999.
\newblock A related online version can be found under {\em Essentially
  {N}on-{O}scillatory and {W}eighted {E}ssentially {N}on-{O}scillatory
  {S}chemes for {H}yperbolic {C}onservation {L}aws} at {\tt
  http://www.icase.edu/library/reports/rdp/97/97-65RDP.tex.refer.html}. 

\bibitem{AlphaThorns_MoL_Neilsen00}
D.~W. Neilsen and M.~W. Choptuik.
\newblock Ultrarelativistic fluid dynamics.
\newblock {\em Class. Quantum Grav.}, {\bf 17}:\penalty0 733--759, 2000.

\end{thebibliography}

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}