summaryrefslogtreecommitdiff
path: root/src/md_solve.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/md_solve.c')
-rw-r--r--src/md_solve.c818
1 files changed, 818 insertions, 0 deletions
diff --git a/src/md_solve.c b/src/md_solve.c
new file mode 100644
index 0000000..c7fa329
--- /dev/null
+++ b/src/md_solve.c
@@ -0,0 +1,818 @@
+/*
+ * Minimal distortion -- actual solver code
+ * Copyright (C) 2016 Anton Khirnov <anton@khirnov.net>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "common.h"
+
+#include <errno.h>
+#include <math.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#if HAVE_OPENCL
+#include <cl.h>
+#include <clBLAS.h>
+#endif
+
+#include "cctk.h"
+#include "cctk_Timers.h"
+#include "util_Table.h"
+
+#include "basis.h"
+#include "pssolve.h"
+#include "md_solve.h"
+#include "threadpool.h"
+
+#define NB_COEFFS(md) (md->nb_coeffs[0] * md->nb_coeffs[1])
+#define NB_COLLOC_POINTS(md) (md->nb_colloc_points[0] * md->nb_colloc_points[1])
+
+/* indices (in our code, not cactus structs) of the grid functions which we'll need to
+ * interpolate on the pseudospectral grid */
+enum MetricVars {
+ GTXX = 0,
+ GTYY,
+ GTZZ,
+ GTXY,
+ GTXZ,
+ GTYZ,
+ PHI,
+ ATXX,
+ ATYY,
+ ATZZ,
+ ATXY,
+ ATXZ,
+ ATYZ,
+ XTX,
+ XTY,
+ XTZ,
+ ALPHA,
+ TRK,
+ NB_METRIC_VARS,
+};
+
+/* indices of the interpolated values of the above grid functions and their derivatives */
+enum InterpMetricVars {
+ I_GTXX = 0,
+ I_GTYY,
+ I_GTZZ,
+ I_GTXY,
+ I_GTXZ,
+ I_GTYZ,
+ I_GTXX_DX,
+ I_GTYY_DX,
+ I_GTZZ_DX,
+ I_GTXZ_DX,
+ I_GTXX_DZ,
+ I_GTYY_DZ,
+ I_GTZZ_DZ,
+ I_GTXZ_DZ,
+ I_GTXX_DXX,
+ I_GTYY_DXX,
+ I_GTZZ_DXX,
+ I_GTXZ_DXX,
+ I_GTXX_DXZ,
+ I_GTYY_DXZ,
+ I_GTZZ_DXZ,
+ I_GTXZ_DXZ,
+ I_GTXX_DZZ,
+ I_GTYY_DZZ,
+ I_GTZZ_DZZ,
+ I_GTXZ_DZZ,
+ I_PHI,
+ I_PHI_DX,
+ I_PHI_DY,
+ I_PHI_DZ,
+ I_PHI_DXX,
+ I_PHI_DZZ,
+ I_PHI_DXZ,
+ I_ATXX,
+ I_ATYY,
+ I_ATZZ,
+ I_ATXY,
+ I_ATXZ,
+ I_ATYZ,
+ I_ATXX_DX,
+ I_ATYY_DX,
+ I_ATZZ_DX,
+ I_ATXZ_DX,
+ I_ATXX_DZ,
+ I_ATYY_DZ,
+ I_ATZZ_DZ,
+ I_ATXZ_DZ,
+ I_XTX,
+ I_XTY,
+ I_XTZ,
+ I_ALPHA,
+ I_ALPHA_DX,
+ I_ALPHA_DY,
+ I_ALPHA_DZ,
+ I_TRK,
+ I_TRK_DX,
+ I_TRK_DZ,
+ NB_INTERP_VARS,
+};
+
+/* per-equation state */
+typedef struct MDEquationContext {
+ double *interp_coords[3];
+ double *interp_values[NB_INTERP_VARS];
+
+ /* eq_coeffs[i][j] is an array of coefficients at the collocation points
+ * for j-th derivative of i-th unknown function */
+ double *(*eq_coeffs)[PSSOLVE_DIFF_ORDER_NB];
+
+ double *rhs;
+} MDEquationContext;
+
+struct MDSolverPriv {
+ PSSolveContext *ps_ctx;
+ cGH *gh;
+
+ MDEquationContext *eqs;
+
+ int colloc_grid_order[2];
+
+ double *rhs;
+
+ double *coeff_scale;
+
+ // interpolation parameters
+ int coord_system;
+ int interp_operator;
+ int interp_params;
+
+ CCTK_REAL *interp_coords[3];
+
+ int interp_vars_indices[NB_METRIC_VARS];
+ CCTK_REAL *interp_values[NB_INTERP_VARS];
+ CCTK_INT interp_value_codes[NB_INTERP_VARS];
+
+#if HAVE_OPENCL
+ // OpenCL / CLBLAS stuff
+ cl_context ocl_ctx;
+ cl_command_queue ocl_queue;
+#endif
+
+ ThreadPoolContext *tp;
+ ThreadPoolContext *tp_internal;
+
+ uint64_t solve_count;
+ uint64_t solve_time;
+
+ uint64_t interp_geometry_count;
+ uint64_t interp_geometry_time;
+
+ uint64_t calc_eq_coeffs_count;
+ uint64_t calc_eq_coeffs_time;
+};
+
+typedef struct MDCalcEqThread {
+ MDSolver *ctx;
+ MDEquationContext *eq_ctx;
+ size_t block_size;
+} MDCalcEqThread;
+
+/* mapping between our indices and thorn names */
+static const char *metric_vars[] = {
+ [GTXX] = "ML_BSSN::gt11",
+ [GTYY] = "ML_BSSN::gt22",
+ [GTZZ] = "ML_BSSN::gt33",
+ [GTXY] = "ML_BSSN::gt12",
+ [GTXZ] = "ML_BSSN::gt13",
+ [GTYZ] = "ML_BSSN::gt23",
+ [ATXX] = "ML_BSSN::At11",
+ [ATYY] = "ML_BSSN::At22",
+ [ATZZ] = "ML_BSSN::At33",
+ [ATXY] = "ML_BSSN::At12",
+ [ATXZ] = "ML_BSSN::At13",
+ [ATYZ] = "ML_BSSN::At23",
+ [PHI] = "ML_BSSN::phi",
+ [XTX] = "ML_BSSN::Xt1",
+ [XTY] = "ML_BSSN::Xt2",
+ [XTZ] = "ML_BSSN::Xt3",
+ [ALPHA] = "ML_BSSN::alpha",
+ [TRK] = "ML_BSSN::trK",
+};
+
+/* mapping between the cactus grid values and interpolated values */
+static const CCTK_INT interp_operation_indices[] = {
+ [I_GTXX] = GTXX,
+ [I_GTYY] = GTYY,
+ [I_GTZZ] = GTZZ,
+ [I_GTXY] = GTXY,
+ [I_GTXZ] = GTXZ,
+ [I_GTYZ] = GTYZ,
+ [I_GTXX_DX] = GTXX,
+ [I_GTYY_DX] = GTYY,
+ [I_GTZZ_DX] = GTZZ,
+ [I_GTXZ_DX] = GTXZ,
+ [I_GTXX_DZ] = GTXX,
+ [I_GTYY_DZ] = GTYY,
+ [I_GTZZ_DZ] = GTZZ,
+ [I_GTXZ_DZ] = GTXZ,
+ [I_GTXX_DXX] = GTXX,
+ [I_GTYY_DXX] = GTYY,
+ [I_GTZZ_DXX] = GTZZ,
+ [I_GTXZ_DXX] = GTXZ,
+ [I_GTXX_DXZ] = GTXX,
+ [I_GTYY_DXZ] = GTYY,
+ [I_GTZZ_DXZ] = GTZZ,
+ [I_GTXZ_DXZ] = GTXZ,
+ [I_GTXX_DZZ] = GTXX,
+ [I_GTYY_DZZ] = GTYY,
+ [I_GTZZ_DZZ] = GTZZ,
+ [I_GTXZ_DZZ] = GTXZ,
+ [I_PHI] = PHI,
+ [I_PHI_DX] = PHI,
+ [I_PHI_DY] = PHI,
+ [I_PHI_DZ] = PHI,
+ [I_PHI_DXX] = PHI,
+ [I_PHI_DZZ] = PHI,
+ [I_PHI_DXZ] = PHI,
+ [I_ATXX] = ATXX,
+ [I_ATYY] = ATYY,
+ [I_ATZZ] = ATZZ,
+ [I_ATXY] = ATXY,
+ [I_ATXZ] = ATXZ,
+ [I_ATYZ] = ATYZ,
+ [I_ATXX_DX] = ATXX,
+ [I_ATYY_DX] = ATYY,
+ [I_ATZZ_DX] = ATZZ,
+ [I_ATXZ_DX] = ATXZ,
+ [I_ATXX_DZ] = ATXX,
+ [I_ATYY_DZ] = ATYY,
+ [I_ATZZ_DZ] = ATZZ,
+ [I_ATXZ_DZ] = ATXZ,
+ [I_XTX] = XTX,
+ [I_XTY] = XTY,
+ [I_XTZ] = XTZ,
+ [I_ALPHA] = ALPHA,
+ [I_ALPHA_DX] = ALPHA,
+ [I_ALPHA_DY] = ALPHA,
+ [I_ALPHA_DZ] = ALPHA,
+ [I_TRK] = TRK,
+ [I_TRK_DX] = TRK,
+ [I_TRK_DZ] = TRK,
+};
+
+/* the operation (plain value or x/y/z-derivative) to apply during interpolation */
+static const CCTK_INT interp_operation_codes[] = {
+ [I_GTXX] = 0,
+ [I_GTYY] = 0,
+ [I_GTZZ] = 0,
+ [I_GTXY] = 0,
+ [I_GTXZ] = 0,
+ [I_GTYZ] = 0,
+ [I_GTXX_DX] = 1,
+ [I_GTYY_DX] = 1,
+ [I_GTZZ_DX] = 1,
+ [I_GTXZ_DX] = 1,
+ [I_GTXX_DZ] = 3,
+ [I_GTYY_DZ] = 3,
+ [I_GTZZ_DZ] = 3,
+ [I_GTXZ_DZ] = 3,
+ [I_GTXX_DXX] = 11,
+ [I_GTYY_DXX] = 11,
+ [I_GTZZ_DXX] = 11,
+ [I_GTXZ_DXX] = 11,
+ [I_GTXX_DXZ] = 13,
+ [I_GTYY_DXZ] = 13,
+ [I_GTZZ_DXZ] = 13,
+ [I_GTXZ_DXZ] = 13,
+ [I_GTXX_DZZ] = 33,
+ [I_GTYY_DZZ] = 33,
+ [I_GTZZ_DZZ] = 33,
+ [I_GTXZ_DZZ] = 33,
+ [I_PHI] = 0,
+ [I_PHI_DX] = 1,
+ [I_PHI_DY] = 2,
+ [I_PHI_DZ] = 3,
+ [I_PHI_DXX] = 11,
+ [I_PHI_DZZ] = 33,
+ [I_PHI_DXZ] = 13,
+ [I_ATXX] = 0,
+ [I_ATYY] = 0,
+ [I_ATZZ] = 0,
+ [I_ATXY] = 0,
+ [I_ATXZ] = 0,
+ [I_ATYZ] = 0,
+ [I_ATXX_DX] = 1,
+ [I_ATYY_DX] = 1,
+ [I_ATZZ_DX] = 1,
+ [I_ATXZ_DX] = 1,
+ [I_ATXX_DZ] = 3,
+ [I_ATYY_DZ] = 3,
+ [I_ATZZ_DZ] = 3,
+ [I_ATXZ_DZ] = 3,
+ [I_XTX] = 0,
+ [I_XTY] = 0,
+ [I_XTZ] = 0,
+ [I_ALPHA] = 0,
+ [I_ALPHA_DX] = 1,
+ [I_ALPHA_DY] = 2,
+ [I_ALPHA_DZ] = 3,
+ [I_TRK] = 0,
+ [I_TRK_DX] = 1,
+ [I_TRK_DZ] = 3,
+};
+
+/* interpolate the cactus gridfunctions onto the pseudospectral grid */
+static int interp_geometry(MDSolver *ctx)
+{
+ MDSolverPriv *s = ctx->priv;
+ int ret;
+
+ for (int i = 0; i < ctx->nb_equations; i++) {
+ MDEquationContext *eq_ctx = &s->eqs[i];
+
+ ret = CCTK_InterpGridArrays(s->gh, 3, s->interp_operator, s->interp_params,
+ s->coord_system, NB_COLLOC_POINTS(ctx), CCTK_VARIABLE_REAL,
+ (const void * const *)eq_ctx->interp_coords, ARRAY_ELEMS(s->interp_vars_indices), s->interp_vars_indices,
+ ARRAY_ELEMS(eq_ctx->interp_values), s->interp_value_codes, (void * const *)eq_ctx->interp_values);
+ if (ret < 0)
+ CCTK_WARN(0, "Error interpolating");
+ }
+
+ return 0;
+}
+
+#if 0
+#define EQUATION 0
+#include "md_solve_template.c"
+#undef EQUATION
+
+#define EQUATION 1
+#include "md_solve_template.c"
+#undef EQUATION
+#else
+#define EQUATION 0
+#include "gamma_freeze_template.c"
+#undef EQUATION
+
+#define EQUATION 1
+#include "gamma_freeze_template.c"
+#undef EQUATION
+#endif
+
+static void (*calc_eq_coeffs[2])(void *, unsigned int, unsigned int,
+ unsigned int, unsigned int) = {
+ calc_eq_coeffs_0,
+ calc_eq_coeffs_1,
+};
+
+int md_solver_solve(MDSolver *ctx)
+{
+ MDSolverPriv *s = ctx->priv;
+ const double *(*eq_coeffs[2])[PSSOLVE_DIFF_ORDER_NB];
+ int ret;
+ int64_t start, totaltime_start;
+
+ totaltime_start = gettime();
+
+ /* interpolate the metric values and construct the quantities we'll need */
+ CCTK_TimerStart("MinimalDistortion_interp_geometry");
+ start = gettime();
+
+ ret = interp_geometry(ctx);
+
+ s->interp_geometry_time += gettime() - start;
+ s->interp_geometry_count++;
+ CCTK_TimerStop("MinimalDistortion_interp_geometry");
+ if (ret < 0)
+ return ret;
+
+ CCTK_TimerStart("MinimalDistortion_calc_eq_coeffs");
+ start = gettime();
+
+ for (int i = 0; i < ctx->nb_equations; i++) {
+ MDCalcEqThread thread = {
+ .ctx = ctx,
+ .eq_ctx = &s->eqs[i],
+ .block_size = 256,
+ };
+
+ md_threadpool_execute(s->tp, (NB_COLLOC_POINTS(ctx) + thread.block_size - 1) / thread.block_size,
+ calc_eq_coeffs[i], &thread);
+ }
+
+ eq_coeffs[0] = s->eqs[0].eq_coeffs;
+ eq_coeffs[1] = s->eqs[1].eq_coeffs;
+
+ s->calc_eq_coeffs_time += gettime() - start;
+ s->calc_eq_coeffs_count++;
+ CCTK_TimerStop("MinimalDistortion_calc_eq_coeffs");
+ if (ret < 0)
+ return ret;
+
+ ret = md_pssolve_solve(s->ps_ctx,
+ eq_coeffs,
+ s->rhs, ctx->coeffs);
+ if (ret < 0)
+ return ret;
+
+ //for (int i = 0; i < ctx->nb_equations * NB_COEFFS(ctx); i++)
+ // ctx->coeffs[i] *= s->coeff_scale[i];
+
+ s->solve_count++;
+ s->solve_time += gettime() - totaltime_start;
+
+ return 0;
+}
+
+void md_solver_print_stats(MDSolver *ctx)
+{
+ MDSolverPriv *s = ctx->priv;
+
+ fprintf(stderr,
+ "%g%% interpolate geometry: %lu, "
+ "total time %g s, avg time per call %g ms\n",
+ (double)s->interp_geometry_time * 100 / s->solve_time,
+ s->interp_geometry_count, (double)s->interp_geometry_time / 1e6,
+ (double)s->interp_geometry_time / s->interp_geometry_count / 1e3);
+ fprintf(stderr,
+ "%g%% calc equation coefficients: %lu, "
+ "total time %g s, avg time per call %g ms\n",
+ (double)s->calc_eq_coeffs_time * 100 / s->solve_time,
+ s->calc_eq_coeffs_count, (double)s->calc_eq_coeffs_time / 1e6,
+ (double)s->calc_eq_coeffs_time / s->calc_eq_coeffs_count / 1e3);
+ fprintf(stderr,
+ "%g%% pseudospectral matrix construction: %lu, "
+ "total time %g s, avg time per call %g ms\n",
+ (double)s->ps_ctx->construct_matrix_time * 100 / s->solve_time,
+ s->ps_ctx->construct_matrix_count, (double)s->ps_ctx->construct_matrix_time / 1e6,
+ (double)s->ps_ctx->construct_matrix_time / s->ps_ctx->construct_matrix_count / 1e3);
+ fprintf(stderr,
+ "%g%% BiCGSTAB %lu solves, "
+ "%lu iterations, total time %g s, "
+ "avg iterations per solve %g, avg time per solve %g ms, "
+ "avg time per iteration %g ms\n",
+ (double)s->ps_ctx->cg_time_total * 100 / s->solve_time,
+ s->ps_ctx->cg_solve_count, s->ps_ctx->cg_iter_count, (double)s->ps_ctx->cg_time_total / 1e6,
+ (double)s->ps_ctx->cg_iter_count / s->ps_ctx->cg_solve_count,
+ (double)s->ps_ctx->cg_time_total / s->ps_ctx->cg_solve_count / 1e3,
+ (double)s->ps_ctx->cg_time_total / s->ps_ctx->cg_iter_count / 1e3);
+ fprintf(stderr,
+ "%g%% LU %lu solves, total time %g s, avg time per solve %g ms\n",
+ (double)s->ps_ctx->lu_solves_time * 100 / s->solve_time,
+ s->ps_ctx->lu_solves_count, (double)s->ps_ctx->lu_solves_time / 1e6,
+ (double)s->ps_ctx->lu_solves_time / s->ps_ctx->lu_solves_count / 1e3);
+}
+
+static void init_opencl(MDSolver *ctx)
+#if HAVE_OPENCL
+{
+ MDSolverPriv *s = ctx->priv;
+ int err, count;
+ cl_platform_id platform;
+ cl_context_properties props[3];
+ cl_device_id ocl_device;
+
+ err = clGetPlatformIDs(1, &platform, &count);
+ if (err != CL_SUCCESS || count < 1) {
+ fprintf(stderr, "Could not get an OpenCL platform ID\n");
+ return;
+ }
+
+ err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &ocl_device, &count);
+ if (err != CL_SUCCESS || count < 1) {
+ fprintf(stderr, "Could not get an OpenCL device ID\n");
+ return;
+ }
+
+ props[0] = CL_CONTEXT_PLATFORM;
+ props[1] = (cl_context_properties)platform;
+ props[2] = 0;
+
+ s->ocl_ctx = clCreateContext(props, 1, &ocl_device, NULL, NULL, &err);
+ if (err != CL_SUCCESS || !s->ocl_ctx) {
+ fprintf(stderr, "Could not create an OpenCL context\n");
+ return;
+ }
+
+ s->ocl_queue = clCreateCommandQueue(s->ocl_ctx, ocl_device, 0, &err);
+ if (err != CL_SUCCESS || !s->ocl_queue) {
+ fprintf(stderr, "Could not create an OpenCL command queue: %d\n", err);
+ goto fail;
+ }
+
+ err = clblasSetup();
+ if (err != CL_SUCCESS) {
+ fprintf(stderr, "Error setting up clBLAS\n");
+ goto fail;
+ }
+
+ return;
+fail:
+ if (s->ocl_queue)
+ clReleaseCommandQueue(s->ocl_queue);
+ s->ocl_queue = 0;
+
+ if (s->ocl_ctx)
+ clReleaseContext(s->ocl_ctx);
+ s->ocl_ctx = 0;
+}
+#else
+{
+}
+#endif
+
+static int eq_init(MDSolver *ctx, unsigned int eq_idx)
+{
+ MDSolverPriv *s = ctx->priv;
+ MDEquationContext *eq_ctx = &s->eqs[eq_idx];
+ double *colloc_grid[2] = { s->ps_ctx->colloc_grid[eq_idx][0],
+ s->ps_ctx->colloc_grid[eq_idx][1] };
+ int ret;
+
+ /* prepare the state for the cactus interpolator */
+ for (int i = 0; i < ARRAY_ELEMS(eq_ctx->interp_coords); i++) {
+ ret = posix_memalign((void**)&eq_ctx->interp_coords[i], 32,
+ NB_COLLOC_POINTS(ctx) * sizeof(*eq_ctx->interp_coords[i]));
+ if (ret)
+ return -ENOMEM;
+ }
+
+ for (int j = 0; j < ctx->nb_colloc_points[1]; j++) {
+ for (int i = 0; i < ctx->nb_colloc_points[0]; i++) {
+ eq_ctx->interp_coords[0][j * ctx->nb_colloc_points[0] + i] = colloc_grid[0][i];
+ eq_ctx->interp_coords[1][j * ctx->nb_colloc_points[0] + i] = 0;
+ eq_ctx->interp_coords[2][j * ctx->nb_colloc_points[0] + i] = colloc_grid[1][j];
+ }
+ }
+
+ for (int i = 0; i < ARRAY_ELEMS(eq_ctx->interp_values); i++) {
+ ret = posix_memalign((void**)&eq_ctx->interp_values[i], 32,
+ NB_COLLOC_POINTS(ctx) * sizeof(*eq_ctx->interp_values[i]));
+ if (ret)
+ return -ENOMEM;
+ }
+
+ /* allocate the equation coefficients */
+ eq_ctx->eq_coeffs = calloc(ctx->nb_equations, sizeof(*eq_ctx->eq_coeffs));
+ if (!eq_ctx->eq_coeffs)
+ return -ENOMEM;
+ for (int i = 0; i < ctx->nb_equations; i++)
+ for (int j = 0; j < ARRAY_ELEMS(eq_ctx->eq_coeffs[i]); j++) {
+ ret = posix_memalign((void**)&eq_ctx->eq_coeffs[i][j], 32,
+ NB_COLLOC_POINTS(ctx) * sizeof(*eq_ctx->eq_coeffs[i][j]));
+ if (ret)
+ return -ENOMEM;
+ }
+
+ /* setup the RHS pointer */
+ if (eq_idx == 0)
+ eq_ctx->rhs = s->rhs;
+ else
+ eq_ctx->rhs = s->eqs[eq_idx - 1].rhs + NB_COLLOC_POINTS(ctx);
+
+ return 0;
+}
+
+static const enum MDBasisFamily basis_sets[2][2] = {
+ { MD_BASIS_FAMILY_SB_ODD, MD_BASIS_FAMILY_SB_EVEN },
+ { MD_BASIS_FAMILY_SB_EVEN, MD_BASIS_FAMILY_SB_ODD },
+};
+
+int md_solver_init(MDSolver **pctx,
+ cGH *cctkGH, ThreadPoolContext *tp,
+ unsigned int nb_equations,
+ unsigned int (*basis_order)[2],
+ double sf, double filter_power, double input_filter_power)
+{
+ MDSolver *ctx;
+ MDSolverPriv *s;
+ int max_order = 0;
+ int ret;
+
+ ctx = calloc(1, sizeof(*ctx));
+ if (!ctx)
+ return -ENOMEM;
+
+ ctx->priv = calloc(1, sizeof(*ctx->priv));
+ if (!ctx->priv)
+ goto fail;
+ s = ctx->priv;
+
+ s->gh = cctkGH;
+
+ if (tp) {
+ s->tp = tp;
+ } else {
+ ret = md_threadpool_init(&s->tp_internal, 1);
+ if (ret < 0)
+ goto fail;
+ s->tp = s->tp_internal;
+ }
+
+ s->eqs = calloc(nb_equations, sizeof(*s->eqs));
+ if (!s->eqs)
+ goto fail;
+ ctx->nb_equations = nb_equations;
+
+ ctx->nb_coeffs[0] = basis_order[0][0];
+ ctx->nb_coeffs[1] = basis_order[0][1];
+
+ ctx->nb_colloc_points[0] = basis_order[0][0];
+ ctx->nb_colloc_points[1] = basis_order[0][1];
+
+ if (NB_COLLOC_POINTS(ctx) != NB_COEFFS(ctx))
+ CCTK_WARN(0, "Non-square collocation matrix");
+
+ s->colloc_grid_order[0] = ctx->nb_colloc_points[0];
+ s->colloc_grid_order[1] = ctx->nb_colloc_points[1];
+
+ ret = posix_memalign((void**)&ctx->coeffs, 32, sizeof(*ctx->coeffs) * nb_equations * NB_COEFFS(ctx));
+ ret |= posix_memalign((void**)&s->rhs, 32, sizeof(*s->rhs) * nb_equations * NB_COLLOC_POINTS(ctx));
+ if (ret)
+ goto fail;
+
+ for (int i = 0; i < ctx->nb_equations; i++)
+ for (int j = 0; j < 2; j++) {
+ double sf;
+
+ ret = md_basis_init(&ctx->basis[i][j], basis_sets[i][j], 1.0);
+ if (ret < 0)
+ goto fail;
+
+ sf = 64.0 / md_basis_colloc_point(ctx->basis[i][j], s->colloc_grid_order[j],
+ ctx->nb_colloc_points[j] - 1);
+ md_basis_free(&ctx->basis[i][j]);
+
+ ret = md_basis_init(&ctx->basis[i][j], basis_sets[i][j], sf);
+ if (ret < 0)
+ goto fail;
+ }
+
+ init_opencl(ctx);
+
+ ret = md_pssolve_context_alloc(&s->ps_ctx, 2);
+ if (ret < 0)
+ CCTK_WARN(0, "Error allocating the pseudospectral solver");
+
+ for (int i = 0; i < 2; i++)
+ for (int j = 0; j < 2; j++) {
+ s->ps_ctx->basis[i][j] = ctx->basis[i][j];
+ s->ps_ctx->solve_order[i][j] = basis_order[i][j];
+ max_order = MAX(max_order, basis_order[i][j]);
+ }
+
+ s->ps_ctx->tp = s->tp;
+
+#if HAVE_OPENCL
+ s->ps_ctx->ocl_ctx = s->ocl_ctx;
+ s->ps_ctx->ocl_queue = s->ocl_queue;
+#endif
+
+ ret = md_pssolve_context_init(s->ps_ctx);
+ if (ret < 0)
+ CCTK_WARN(0, "Error initializing the pseudospectral solver");
+
+ for (int i = 0; i < max_order; i++) {
+ fprintf(stderr, "%d ", i);
+ for (int j = 0; j < 2; j++)
+ for (int k = 0; k < 2; k++) {
+ if (i < s->ps_ctx->solve_order[j][k])
+ fprintf(stderr, "%8.8g\t", s->ps_ctx->colloc_grid[j][k][i]);
+ else
+ fprintf(stderr, " ");
+ }
+ fprintf(stderr, "\n");
+ }
+
+ /* init the per-equation state */
+ for (int i = 0; i < ctx->nb_equations; i++) {
+ ret = eq_init(ctx, i);
+ if (ret < 0)
+ goto fail;
+ }
+
+ ret = posix_memalign((void**)&s->coeff_scale, 32, 2 * NB_COEFFS(ctx) * sizeof(*s->coeff_scale));
+ if (ret)
+ goto fail;
+ for (int j = 0; j < ctx->nb_coeffs[1]; j++)
+ for (int i = 0; i < ctx->nb_coeffs[0]; i++) {
+ s->coeff_scale[j * ctx->nb_coeffs[0] + i] = exp(-36.0 * pow((double)i / ctx->nb_coeffs[0], filter_power)) *
+ exp(-36.0 * pow((double)j / ctx->nb_coeffs[1], filter_power));
+ s->coeff_scale[NB_COEFFS(ctx) + j * ctx->nb_coeffs[0] + i] = exp(-36.0 * pow((double)i / ctx->nb_coeffs[0], filter_power)) *
+ exp(-36.0 * pow((double)j / ctx->nb_coeffs[1], filter_power));
+ }
+
+ for (int i = 0; i < ARRAY_ELEMS(s->interp_values); i++) {
+#if 0
+ ret = posix_memalign((void**)&s->interp_values[i], 32,
+ 2 * NB_COLLOC_POINTS(ctx) * sizeof(*s->interp_values[i]));
+ if (ret)
+ goto fail;
+#endif
+ s->interp_value_codes[i] = CCTK_VARIABLE_REAL;
+ }
+
+ for (int i = 0; i < ARRAY_ELEMS(metric_vars); i++) {
+ s->interp_vars_indices[i] = CCTK_VarIndex(metric_vars[i]);
+ if (s->interp_vars_indices[i] < 0)
+ CCTK_VWarn(0, __LINE__, __FILE__, CCTK_THORNSTRING, "Error getting the index of variable: %s\n", metric_vars[i]);
+ }
+
+ s->coord_system = CCTK_CoordSystemHandle("cart3d");
+ if (s->coord_system < 0)
+ CCTK_WARN(0, "Error getting the coordinate system");
+
+ s->interp_operator = CCTK_InterpHandle("Lagrange polynomial interpolation (tensor product)");
+ if (s->interp_operator < 0)
+ CCTK_WARN(0, "Error getting the interpolation operator");
+
+ s->interp_params = Util_TableCreateFromString("order=4 want_global_mode=1");
+ if (s->interp_params < 0)
+ CCTK_WARN(0, "Error creating interpolation parameters table");
+
+ ret = Util_TableSetIntArray(s->interp_params, NB_INTERP_VARS,
+ interp_operation_codes, "operation_codes");
+ if (ret < 0)
+ CCTK_WARN(0, "Error setting operation codes");
+
+ ret = Util_TableSetIntArray(s->interp_params, NB_INTERP_VARS,
+ interp_operation_indices, "operand_indices");
+ if (ret < 0)
+ CCTK_WARN(0, "Error setting operand indices");
+
+ CCTK_TimerCreate("MinimalDistortion_Solve");
+ CCTK_TimerCreate("MinimalDistortion_Expand");
+ CCTK_TimerCreate("MinimalDistortion_interp_geometry");
+ CCTK_TimerCreate("MinimalDistortion_calc_eq_coeffs");
+ CCTK_TimerCreate("MinimalDistortion_construct_matrix");
+ CCTK_TimerCreate("MinimalDistortion_solve_LU");
+ CCTK_TimerCreate("MinimalDistortion_solve_BiCGSTAB");
+
+ *pctx = ctx;
+ return 0;
+fail:
+ md_solver_free(&ctx);
+ return -ENOMEM;
+}
+
+void md_solver_free(MDSolver **pctx)
+{
+ MDSolver *ctx = *pctx;
+
+ if (!ctx)
+ return;
+
+ if (ctx->priv) {
+ for (int i = 0; i < ARRAY_ELEMS(ctx->priv->interp_coords); i++)
+ free(ctx->priv->interp_coords[i]);
+ for (int i = 0; i < ARRAY_ELEMS(ctx->priv->interp_values); i++)
+ free(ctx->priv->interp_values[i]);
+ free(ctx->priv->rhs);
+ free(ctx->priv->coeff_scale);
+
+ for (int i = 0; i < ctx->nb_equations; i++) {
+ MDEquationContext *eq_ctx = &ctx->priv->eqs[i];
+ for (int j = 0; j < ARRAY_ELEMS(eq_ctx->interp_coords); j++)
+ free(eq_ctx->interp_coords[j]);
+ for (int j = 0; j < ARRAY_ELEMS(eq_ctx->interp_values); j++)
+ free(eq_ctx->interp_values[j]);
+
+ if (eq_ctx->eq_coeffs) {
+ for (int j = 0; j < ctx->nb_equations; j++)
+ for (int k = 0; k < ARRAY_ELEMS(eq_ctx->eq_coeffs[j]); k++)
+ free(eq_ctx->eq_coeffs[j][k]);
+ }
+ free(eq_ctx->eq_coeffs);
+ }
+ free(ctx->priv->eqs);
+
+ md_pssolve_context_free(&ctx->priv->ps_ctx);
+
+ md_threadpool_free(&ctx->priv->tp_internal);
+
+#if HAVE_OPENCL
+ if (ctx->priv->ocl_queue)
+ clReleaseCommandQueue(ctx->priv->ocl_queue);
+ if (ctx->priv->ocl_ctx)
+ clReleaseContext(ctx->priv->ocl_ctx);
+#endif
+ }
+
+ free(ctx->priv);
+
+ free(ctx->coeffs);
+
+ free(ctx);
+ *pctx = NULL;
+}