summaryrefslogtreecommitdiff
path: root/src/maximal_slicing_axi_mg.c
blob: ab226856baf077a0e2c68f9a22ca7338505365ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <mg2d.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Timers.h"
#include "util_Table.h"

#define SQR(x) ((x) * (x))
#define ABS(x) ((x >= 0) ? (x) : -(x))
#define ARRAY_ELEMS(x) (sizeof(x) / sizeof(*x))

#define CPINDEX(cp, i, j, k) ((k * cp->grid_size[1] + j) * cp->grid_size[0] + i)

#if 0
#define LOGDEBUG(...) fprintf(stderr, __VA_ARGS__)
#else
#define LOGDEBUG
#endif

static const struct {
    const char *str;
    enum MG2DLogLevel level;
} log_levels[] = {
    { "fatal",   MG2D_LOG_FATAL   },
    { "error",   MG2D_LOG_ERROR   },
    { "warning", MG2D_LOG_WARNING },
    { "info",    MG2D_LOG_INFO    },
    { "verbose", MG2D_LOG_VERBOSE },
    { "debug",   MG2D_LOG_DEBUG   },
};

#include <sys/time.h>
static inline int64_t gettime(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
}

/* precomputed values for a given refined grid */
typedef struct CoordPatch {
    int    level;
    ptrdiff_t grid_size[3];

    MG2DContext *solver;

    int cur_step;
    MG2DContext **solver_eval;
    int        nb_solver_eval;

    ptrdiff_t y_idx;

    /* number of x/z grid points by which the elliptic solver domain is offset
     * from the cactus grid */
    ptrdiff_t offset_left[2];
} CoordPatch;

typedef struct MSMGContext {
    cGH *gh;

    int fd_stencil;
    int maxiter;
    int max_exact_size;
    int nb_cycles;
    int nb_relax_post;
    int nb_relax_pre;
    double tol_residual;
    double tol_residual_base;
    double cfl_factor;

    double base_dt;
    int nb_levels;

    CoordPatch *patches;
    int nb_patches;

    int log_level;

    /* timings */
    int64_t time_solve;
    int64_t count_solve;

    int64_t time_solve_mg;
    int64_t count_solve_mg;
    int64_t time_solve_fill_coeffs;
    int64_t time_solve_boundaries;
    int64_t time_solve_mg2d;
    int64_t time_solve_export;
    int64_t time_solve_history;

    int64_t time_eval;
    int64_t count_eval;

    int64_t time_extrapolate;
    int64_t count_extrapolate;

    int64_t time_fine_solve;
    int64_t count_fine_solve;
    int64_t time_fine_fill_coeffs;
    int64_t time_fine_boundaries;
    int64_t time_fine_mg2d;
    int64_t time_fine_export;
    int64_t time_init_guess_eval;
} MSMGContext;

static MSMGContext *ms;

static int ctz(int a)
{
    int ret = 0;

    if (!a)
        return INT_MAX;

    while (!(a & 1)) {
        a >>= 1;
        ret++;
    }

    return ret;
}

static void coord_patch_free(CoordPatch *cp)
{
    mg2d_solver_free(&cp->solver);

    for (int i = 0; i < cp->nb_solver_eval; i++)
        mg2d_solver_free(&cp->solver_eval[i]);
    free(cp->solver_eval);
    cp->solver_eval    = NULL;
    cp->nb_solver_eval = 0;
}

static void log_callback(const MG2DContext *ctx, int level,
                         const char *fmt, va_list vl)
{
    MSMGContext *ms = ctx->opaque;
    int target_level = ms->log_level;
    if (level > target_level)
        return;
    fprintf(stderr, "[%d] t=%g ", ctz(ms->gh->cctk_levfac[0]), ms->gh->cctk_time);
    vfprintf(stderr, fmt, vl);
}

static MG2DContext *solver_alloc(MSMGContext *ms, int level, size_t domain_size,
                                double step)
{
    const char *omp_threads = getenv("OMP_NUM_THREADS");

    MG2DContext *solver;

    solver = mg2d_solver_alloc(domain_size);
    if (!solver)
        return NULL;

    solver->step[0] = step;
    solver->step[1] = solver->step[0];

    solver->fd_stencil = ms->fd_stencil;

    solver->boundaries[MG2D_BOUNDARY_0L]->type = MG2D_BC_TYPE_REFLECT;
    solver->boundaries[MG2D_BOUNDARY_1L]->type = MG2D_BC_TYPE_REFLECT;
    solver->boundaries[MG2D_BOUNDARY_0U]->type = level ? MG2D_BC_TYPE_FIXVAL : MG2D_BC_TYPE_FALLOFF;
    solver->boundaries[MG2D_BOUNDARY_1U]->type = level ? MG2D_BC_TYPE_FIXVAL : MG2D_BC_TYPE_FALLOFF;

    solver->maxiter   = ms->maxiter;
    if (ms->tol_residual_base > 0.0)
        solver->tol = ms->tol_residual_base / SQR(solver->step[0]);
    else
        solver->tol = ms->tol_residual;
    solver->nb_cycles      = ms->nb_cycles;
    solver->nb_relax_post  = ms->nb_relax_post;
    solver->nb_relax_pre   = ms->nb_relax_pre;
    solver->cfl_factor     = ms->cfl_factor;
    solver->max_exact_size = ms->max_exact_size;

    solver->opaque       = ms;
    solver->log_callback = log_callback;

    if (omp_threads)
        solver->nb_threads = strtol(omp_threads, NULL, 0);
    if (solver->nb_threads <= 0)
        solver->nb_threads = 1;

    /* initialize boundary values to zero,
     * non-zero values on the outer boundaries of refined levels are filled in elsewhere */
    for (int i = 0; i < 4; i++) {
        for (size_t j = 0; j < solver->fd_stencil; j++)
            memset(solver->boundaries[i]->val + j * solver->boundaries[i]->val_stride - j,
                   0, sizeof(*solver->boundaries[i]->val) * (domain_size + 2 * j));
    }

    return solver;
}

static CoordPatch *get_coord_patch(MSMGContext *ms, int level)
{
    cGH *gh = ms->gh;

    const size_t grid_size = gh->cctk_lsh[2] * gh->cctk_lsh[1] * gh->cctk_lsh[0];
    const double *a_x = CCTK_VarDataPtr(gh, 0, "grid::x");
    const double *a_y = CCTK_VarDataPtr(gh, 0, "grid::y");
    const double *a_z = CCTK_VarDataPtr(gh, 0, "grid::z");

    CoordPatch *cp;
    size_t domain_size[2];
    int integrator_substeps = MoLNumIntegratorSubsteps();
    int i, ret;

    for (int i = 0; i < ms->nb_patches; i++) {
        cp = &ms->patches[i];

        if (cp->level == level)
            return cp;
    }

    /* create a new patch */
    ms->patches = realloc(ms->patches, sizeof(*ms->patches) * (ms->nb_patches + 1));
    cp = &ms->patches[ms->nb_patches];

    memset(cp, 0, sizeof(*cp));

    cp->level = ctz(ms->gh->cctk_levfac[0]);
    cp->grid_size[0] = gh->cctk_lsh[0];
    cp->grid_size[1] = gh->cctk_lsh[1];
    cp->grid_size[2] = gh->cctk_lsh[2];

    for (i = 0; i < gh->cctk_lsh[1]; i++)
        if (fabs(a_y[CCTK_GFINDEX3D(gh, 0, i, 0)]) < 1e-8) {
            cp->y_idx = i;
            break;
        }
    if (i == gh->cctk_lsh[1])
        CCTK_WARN(0, "The grid does not include y==0");

    for (int i = 0; i < 2; i++) {
        ptrdiff_t offset_left = ms->gh->cctk_nghostzones[2 * i];
        ptrdiff_t offset_right = offset_left;

        /* account for grid tapering on refined levels */
        if (cp->level > 0)
            offset_right *= integrator_substeps * 2;
        ///* the outer boundary layer overlaps with the first ghost zone */
        //if (cp->level > 0)
        //    offset_right++;
        if (cp->level > 0)
            offset_right--;

        domain_size[i] = ms->gh->cctk_lsh[2 * i] - offset_left - offset_right;
        /* the outer boundary layer overlaps with the first ghost zone */
        if (cp->level > 0)
            domain_size[i]++;

        cp->offset_left[i]  = offset_left;
    }

    if (domain_size[0] != domain_size[1])
        CCTK_WARN(0, "The grid is non-square, only square grids are supported");

    cp->solver = solver_alloc(ms, level, domain_size[0], a_x[1] - a_x[0]);
    if (!cp->solver)
        CCTK_WARN(0, "Error allocating the solver");

    /* on the coarsest levels we allocate a solver for each of the substeps
     * between the coarser-grid timelevels */
    if (level == ms->nb_levels - 1) {
        cp->nb_solver_eval = 2 * integrator_substeps;
        cp->solver_eval = calloc(cp->nb_solver_eval, sizeof(*cp->solver_eval));
        if (!cp->solver_eval)
            CCTK_WARN(0, "Error allocating solvers");

        for (int step = 0; step < 2; step++)
            for (int substep = 0; substep < integrator_substeps; substep++) {
                size_t size = cp->grid_size[0] - cp->offset_left[0] - (ms->fd_stencil - 1)
                    - ms->gh->cctk_nghostzones[0] * (step * integrator_substeps + substep);
                MG2DContext *s = solver_alloc(ms, level, size, a_x[1] - a_x[0]);
                if (!s)
                    CCTK_WARN(0, "Error allocating the solver");

                cp->solver_eval[step * integrator_substeps + substep] = s;
            }
    }

    ms->nb_patches++;
    return cp;
}

static void print_stats(MSMGContext *ms)
{
    int orig_log_level;
    int64_t total = ms->time_solve + ms->time_eval;

    fprintf(stderr, "%2.2f%% eval: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_eval * 100.0 / total, ms->count_eval,
            ms->time_eval / 1e6, ms->time_eval / 1e3 / ms->count_eval);
    fprintf(stderr, "  %2.2f%% eval extrapolate: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_extrapolate * 100.0 / total, ms->count_extrapolate,
            ms->time_extrapolate / 1e6, ms->time_extrapolate / 1e3 / ms->count_extrapolate);
    fprintf(stderr, "  %2.2f%% fine solve: %ld runs; %g s total; %g ms avg per run || "
            "%2.2f%% fill coeffs %2.2f%% boundaries %2.2f%% mg2d %2.2f%% export\n",
            (double)ms->time_fine_solve * 100.0 / total, ms->count_fine_solve,
            ms->time_fine_solve / 1e6, ms->time_fine_solve / 1e3 / ms->count_fine_solve,
            (double)ms->time_fine_fill_coeffs * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_boundaries  * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_mg2d        * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_export      * 100.0 / ms->time_fine_solve);

    fprintf(stderr, "%2.2f%% solve: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_solve * 100.0 / total, ms->count_solve,
            ms->time_solve / 1e6, ms->time_solve / 1e3 / ms->count_solve);
    fprintf(stderr, "  %2.2f%% solve mg2d: %ld runs; %g s total; %g ms avg per run || "
            "%2.2f%% fill coeffs %2.2f%% boundaries %2.2f%% mg2d %2.2f%% export %2.2f%% history\n",
            (double)ms->time_solve_mg * 100.0 / total, ms->count_solve_mg,
            ms->time_solve_mg / 1e6, ms->time_solve_mg / 1e3 / ms->count_solve_mg,
            (double)ms->time_solve_fill_coeffs * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_boundaries  * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_mg2d        * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_export      * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_history     * 100.0 / ms->time_solve_mg);

    orig_log_level = ms->log_level;
    ms->log_level = MG2D_LOG_VERBOSE;

    for (int i = 0; i < ms->nb_patches; i++) {
        CoordPatch *cp = get_coord_patch(ms, i);
        char indent_buf[64];

        snprintf(indent_buf, sizeof(indent_buf), " [%d] ", i);

        mg2d_print_stats(cp->solver, indent_buf);

        for (int j = 0; j < cp->nb_solver_eval; j++) {
            snprintf(indent_buf, sizeof(indent_buf), " [%d/%d] ", i, j);
            mg2d_print_stats(cp->solver_eval[j], indent_buf);
        }
    }
    ms->log_level = orig_log_level;
}

static int context_init(cGH *gh, int fd_stencil, int maxiter, int exact_size, int nb_cycles,
                        int nb_relax_pre, int nb_relax_post, double tol_residual, double tol_residual_base,
                        double cfl_factor, int nb_levels,
                        const char *loglevel_str,
                        MSMGContext **ctx)
{
    MSMGContext *ms;
    int loglevel = -1;

    ms = calloc(1, sizeof(*ms));
    if (!ms)
        return -ENOMEM;

    ms->gh = gh;
    ms->fd_stencil    = fd_stencil;
    ms->maxiter       = maxiter;
    ms->max_exact_size = exact_size;
    ms->nb_cycles     = nb_cycles;
    ms->nb_relax_pre  = nb_relax_pre;
    ms->nb_relax_post = nb_relax_post;
    ms->tol_residual  = tol_residual;
    ms->tol_residual_base = tol_residual_base;
    ms->cfl_factor    = cfl_factor;
    ms->base_dt         = gh->cctk_delta_time;
    ms->nb_levels       = nb_levels;

    for (int i = 0; i < ARRAY_ELEMS(log_levels); i++) {
        if (!strcmp(loglevel_str, log_levels[i].str)) {
            loglevel = log_levels[i].level;
            break;
        }
    }
    if (loglevel < 0) {
        fprintf(stderr, "Invalid loglevel: %s\n", loglevel_str);
        return -EINVAL;
    }

    ms->log_level = loglevel;

    *ctx = ms;

    return 0;
}

static void context_free(MSMGContext **pms)
{
    MSMGContext *ms = *pms;

    if (!ms)
        return;

    for (int i = 0; i < ms->nb_patches; i++)
        coord_patch_free(&ms->patches[i]);
    free(ms->patches);

    free(ms);
    *pms = NULL;
}

static void fill_eq_coeffs(MSMGContext *ctx, CoordPatch *cp, MG2DContext *solver)
{
    cGH *gh = ctx->gh;
    int ret;

    const ptrdiff_t stride_z = CCTK_GFINDEX3D(gh, 0, 0, 1);

    double *a_x = CCTK_VarDataPtr(gh, 0, "grid::x");
    double *a_z = CCTK_VarDataPtr(gh, 0, "grid::z");

    const double dx = a_x[1] - a_x[0];
    const double dz = a_z[stride_z] - a_z[0];

    double *a_gtxx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt11");
    double *a_gtyy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt22");
    double *a_gtzz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt33");
    double *a_gtxy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt12");
    double *a_gtxz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt13");
    double *a_gtyz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt23");
    double *a_Atxx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At11");
    double *a_Atyy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At22");
    double *a_Atzz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At33");
    double *a_Atxy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At12");
    double *a_Atxz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At13");
    double *a_Atyz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At23");
    double  *a_phi = CCTK_VarDataPtr(gh, 0, "ML_BSSN::phi");
    double  *a_Xtx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::Xt1");
    double  *a_Xtz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::Xt3");

    for (int idx_z = 0; idx_z < solver->domain_size; idx_z++)
        for (int idx_x = 0; idx_x < solver->domain_size; idx_x++) {
            const int idx_src = CCTK_GFINDEX3D(gh, idx_x + cp->offset_left[0], cp->y_idx, idx_z + cp->offset_left[1]);
            const int idx_dc  = idx_z * solver->diff_coeffs_stride + idx_x;
            const int idx_rhs = idx_z * solver->rhs_stride + idx_x;

            const double x = a_x[idx_src];

            const double gtxx = a_gtxx[idx_src];
            const double gtyy = a_gtyy[idx_src];
            const double gtzz = a_gtzz[idx_src];
            const double gtxy = a_gtxy[idx_src];
            const double gtxz = a_gtxz[idx_src];
            const double gtyz = a_gtyz[idx_src];
            const double Atxx = a_Atxx[idx_src];
            const double Atyy = a_Atyy[idx_src];
            const double Atzz = a_Atzz[idx_src];
            const double Atxy = a_Atxy[idx_src];
            const double Atxz = a_Atxz[idx_src];
            const double Atyz = a_Atyz[idx_src];
            const double  phi =  a_phi[idx_src];
            const double  Xtx =  a_Xtx[idx_src];
            const double  Xtz =  a_Xtz[idx_src];

            const double det = gtxx * gtyy * gtzz + 2 * gtxy * gtyz * gtxz - gtzz * SQR(gtxy) - SQR(gtxz) * gtyy - gtxx * SQR(gtyz);

            const double At[3][3] = {
                { Atxx, Atxy, Atxz },
                { Atxy, Atyy, Atyz },
                { Atxz, Atyz, Atzz }};


            double Xx, Xz, k2;
            double phi_dx, phi_dz;

            double Am[3][3], gtu[3][3];

            if (ctx->fd_stencil == 1) {
                phi_dx = (a_phi[idx_src + 1] - a_phi[idx_src - 1]) / (2.0 * dx);
                phi_dz = (a_phi[idx_src + stride_z] - a_phi[idx_src - stride_z]) / (2.0 * dz);
            } else {
                phi_dx = (-1.0 * a_phi[idx_src + 2] + 8.0 * a_phi[idx_src + 1] - 8.0 * a_phi[idx_src - 1] + a_phi[idx_src - 2]) / (12.0 * dx);
                phi_dz = (-1.0 * a_phi[idx_src + 2 * stride_z] + 8.0 * a_phi[idx_src + 1 * stride_z] - 8.0 * a_phi[idx_src - 1 * stride_z] + a_phi[idx_src - 2 * stride_z]) / (12.0 * dz);
            }

            gtu[0][0] =  (gtyy * gtzz - SQR(gtyz)) / det;
            gtu[1][1] =  (gtxx * gtzz - SQR(gtxz)) / det;
            gtu[2][2] =  (gtxx * gtyy - SQR(gtxy)) / det;
            gtu[0][1] = -(gtxy * gtzz - gtyz * gtxz) / det;
            gtu[0][2] =  (gtxy * gtyz - gtyy * gtxz) / det;
            gtu[1][2] = -(gtxx * gtyz - gtxy * gtxz) / det;
            gtu[1][0] = gtu[0][1];
            gtu[2][0] = gtu[0][2];
            gtu[2][1] = gtu[1][2];

            for (int j = 0; j < 3; j++)
                for (int k = 0; k < 3; k++) {
                    double val = 0.0;
                    for (int l = 0; l < 3; l++)
                        val += gtu[j][l] * At[l][k];
                    Am[j][k] = val;
                }

            // K_{ij} K^{ij}
            k2 = 0.0;
            for (int j = 0; j < 3; j++)
                for (int k = 0; k < 3; k++)
                    k2 += Am[j][k] * Am[k][j];

            Xx = SQR(phi) * (Xtx + (phi_dx * gtu[0][0] + phi_dz * gtu[0][2]) / phi);
            Xz = SQR(phi) * (Xtz + (phi_dx * gtu[0][2] + phi_dz * gtu[2][2]) / phi);

            solver->diff_coeffs[MG2D_DIFF_COEFF_20][idx_dc] = SQR(phi) * (gtu[0][0] + ((idx_x == 0) ? gtu[1][1] : 0.0));
            solver->diff_coeffs[MG2D_DIFF_COEFF_02][idx_dc] = SQR(phi) * gtu[2][2];
            solver->diff_coeffs[MG2D_DIFF_COEFF_11][idx_dc] = SQR(phi) * gtu[0][2] * 2;
            solver->diff_coeffs[MG2D_DIFF_COEFF_10][idx_dc] = -Xx + (idx_x ? SQR(phi) * gtu[1][1] / x : 0.0);
            solver->diff_coeffs[MG2D_DIFF_COEFF_01][idx_dc] = -Xz;
            solver->diff_coeffs[MG2D_DIFF_COEFF_00][idx_dc] = -k2;
            solver->rhs[idx_rhs]                            = k2;
        }
}

static void solution_to_grid(CoordPatch *cp, MG2DContext *solver, double *dst)
{
    for (int j = 0; j < solver->domain_size; j++)
        for (int i = 0; i < solver->domain_size; i++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, i + cp->offset_left[0], cp->y_idx, j + cp->offset_left[1]);
            const int idx_src = j * solver->u_stride + i;
            dst[idx_dst] = 1.0 + solver->u[idx_src];
        }

    if (cp->level == 0) {
        /* on the coarsest level, extrapolate the outer boundary ghost points */
        for (int idx_z = cp->offset_left[1]; idx_z < cp->offset_left[1] + solver->domain_size; idx_z++)
            for (int idx_x = cp->offset_left[1] + solver->domain_size; idx_x < cp->grid_size[0]; idx_x++) {
                const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                dst[idx_dst] = 2.0 * dst[idx_dst - 1] - dst[idx_dst - 2];
            }

        for (int idx_x = cp->offset_left[0]; idx_x < cp->grid_size[0]; idx_x++)
            for (int idx_z = cp->offset_left[1] + solver->domain_size; idx_z < cp->grid_size[2]; idx_z++) {
                const ptrdiff_t idx_dst  = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                const ptrdiff_t idx_src0 = CPINDEX(cp, idx_x, cp->y_idx, idx_z - 1);
                const ptrdiff_t idx_src1 = CPINDEX(cp, idx_x, cp->y_idx, idx_z - 2);
                dst[idx_dst] = 2.0 * dst[idx_src0] - dst[idx_src1];
            }
    }

    /* fill in the axial symmetry ghostpoints by mirroring */
    for (int idx_z = cp->offset_left[1]; idx_z < cp->grid_size[2]; idx_z++)
        for (int idx_x = 0; idx_x < cp->offset_left[0]; idx_x++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
            const ptrdiff_t idx_src = CPINDEX(cp, 2 * cp->offset_left[0] - idx_x, cp->y_idx, idx_z);
            dst[idx_dst] = dst[idx_src];
        }
    for (int idx_z = 0; idx_z < cp->offset_left[1]; idx_z++)
        for (int idx_x = 0; idx_x < cp->grid_size[0]; idx_x++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
            const ptrdiff_t idx_src = CPINDEX(cp, idx_x, cp->y_idx, 2 * cp->offset_left[1] - idx_z);
            dst[idx_dst] = dst[idx_src];
        }
}

void msa_mg_eval(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    int64_t total_start;

    int ret;

    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];
    const double t = cctkGH->cctk_time;
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    double time_interp_step, fact0, fact1;

    total_start = gettime();

    LOGDEBUG( "evaluating lapse at rl=%d, t=%g\n", reflevel, t);

    time_interp_step = lapse_prev1_time[reflevel] - lapse_prev0_time[reflevel];

    if (lapse_prev0_time[reflevel] == DBL_MAX &&
        lapse_prev1_time[reflevel] == DBL_MAX) {
        fact0 = 0.0;
        fact1 = 0.0;
    } else if (lapse_prev0_time[reflevel] == DBL_MAX) {
        fact0 = 0.0;
        fact1 = 1.0;
    } else {
        fact0 = (lapse_prev1_time[reflevel] - t) / time_interp_step;
        fact1 = (t - lapse_prev0_time[reflevel]) / time_interp_step;
    }

    if (reflevel < ms->nb_levels - 1) {
        /* on coarse levels use extrapolated past solutions */
        int64_t extrap_start = gettime();

        LOGDEBUG( "extrapolating from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

        for (size_t i = 0; i < grid_size; i++)
            lapse_mg_eval[i] = fact0 * lapse_prev0[i] + fact1 * lapse_prev1[i];

        ms->time_extrapolate += gettime() - extrap_start;
        ms->count_extrapolate++;
    } else {
        /* on the finest level, use the extrapolation only for the boundary
         * values and solve for the interior */
        int64_t fine_solve_start = gettime();
        int64_t start;
        CoordPatch *cp = get_coord_patch(ms, reflevel);
        const int timestep = lrint(t * cctkGH->cctk_levfac[0] / ms->base_dt);
        int mol_substeps = MoLNumIntegratorSubsteps();
        int *mol_step = CCTK_VarDataPtr(cctkGH, 0, "MoL::MoL_Intermediate_Step");
        int solver_idx;

        MG2DContext *solver;

        if (!mol_step || *mol_step <= 0)
            CCTK_WARN(0, "Invalid MoL step");

        solver_idx = (cp->cur_step & 1) * mol_substeps + (mol_substeps - *mol_step);
        solver = cp->solver_eval[solver_idx];

        start = gettime();
        fill_eq_coeffs(ms, cp, solver);
        ms->time_fine_fill_coeffs += gettime() - start;

        {
            start = gettime();

            if (solver_idx) {
                MG2DContext *solver_src = cp->solver_eval[solver_idx - 1];

                for (int line = 0; line < solver->domain_size; line++) {
                    memcpy(solver->u + line * solver->u_stride, solver_src->u + line * solver_src->u_stride,
                           sizeof(*solver->u) * solver->domain_size);
                }
            } else {
                for (int line = 0; line < solver->domain_size; line++)
                    for (int i = 0; i < solver->domain_size; i++)
                        solver->u[line * solver->u_stride + i] = lapse_mg[(cp->offset_left[1] + line) * cctk_lsh[0] + cp->offset_left[0] + i] - 1.0;
            }

        }

        ms->time_init_guess_eval += gettime() - start;

        LOGDEBUG( "extrapolating BCs from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

        start = gettime();
        for (ptrdiff_t idx_z = cp->offset_left[1] + solver->domain_size - 1; idx_z < cctkGH->cctk_lsh[2]; idx_z++)
            for (ptrdiff_t idx_x = 0; idx_x < cctkGH->cctk_lsh[0]; idx_x++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, idx_x, cp->y_idx, idx_z);
                lapse_mg_eval[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
            }
        for (ptrdiff_t idx_z = 0; idx_z < cctkGH->cctk_lsh[2]; idx_z++)
            for (ptrdiff_t idx_x = cp->offset_left[0] + solver->domain_size - 1; idx_x < cctkGH->cctk_lsh[0]; idx_x++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, idx_x, cp->y_idx, idx_z);
                lapse_mg_eval[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
            }

        for (int j = 0; j < solver->fd_stencil; j++) {
            MG2DBoundary *bnd = solver->boundaries[MG2D_BOUNDARY_1U];
            double *dst = bnd->val + j * bnd->val_stride;
            for (ptrdiff_t i = -j; i < (ptrdiff_t)solver->domain_size + j; i++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, i + cp->offset_left[0], cp->y_idx, cp->offset_left[1] + solver->domain_size - 1 + j);
                dst[i] = lapse_mg_eval[idx] - 1.0;
            }
            if (j == 0) {
                dst = solver->u + solver->u_stride * (solver->domain_size - 1);
                memcpy(dst, bnd->val, sizeof(*dst) * solver->domain_size);
            }
        }
        for (int j = 0; j < solver->fd_stencil; j++) {
            MG2DBoundary *bnd = solver->boundaries[MG2D_BOUNDARY_0U];
            double *dst = bnd->val + j * bnd->val_stride;
            for (ptrdiff_t i = -j; i < (ptrdiff_t)solver->domain_size + j; i++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, cp->offset_left[0] + solver->domain_size - 1 + j, cp->y_idx, cp->offset_left[1] + i);
                dst[i] = lapse_mg_eval[idx] - 1.0;
            }
            if (j == 0) {
                dst = solver->u + solver->domain_size - 1;
                for (ptrdiff_t i = 0; i < solver->domain_size; i++)
                    dst[i * solver->u_stride] = bnd->val[i];
            }
        }
        ms->time_fine_boundaries += gettime() - start;

        LOGDEBUG( "mg solve\n");

        start = gettime();
        ret = mg2d_solve(solver);
        if (ret < 0)
            CCTK_WARN(0, "Error solving the maximal slicing equation");
        ms->time_fine_mg2d += gettime() - start;

        start = gettime();
        solution_to_grid(cp, solver, lapse_mg_eval);
        ms->time_fine_export = gettime() - start;

        ms->time_fine_solve += gettime() - fine_solve_start;
        ms->count_fine_solve++;
    }
    memcpy(alpha, lapse_mg_eval, sizeof(*alpha) * grid_size);

finish:
    ms->time_eval += gettime() - total_start;
    ms->count_eval++;
}

void msa_mg_solve(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    int64_t total_start, mg_start, start;

    int reflevel_top, ts_tmp;
    int ret;

    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];
    const double t = cctkGH->cctk_time;
    const int timestep = lrint(t * cctkGH->cctk_levfac[0] / cctkGH->cctk_delta_time);
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    double *lapse_mg1;

    if (reflevel == ms->nb_levels - 1 && timestep % 2)
        return;

    total_start = gettime();

    LOGDEBUG( "solve lapse at rl=%d, t=%g; step %d\n", reflevel, t, timestep);

    reflevel_top = reflevel;
    ts_tmp = timestep;
    while (reflevel_top > 0 && !(ts_tmp % 2)) {
        ts_tmp /= 2;
        reflevel_top--;
    }

    mg_start = gettime();
    LOGDEBUG( "mg solve cur %d top %d\n", reflevel, reflevel_top);

    /* fill in the equation coefficients */
    cp = get_coord_patch(ms, reflevel);
    start = gettime();
    fill_eq_coeffs(ms, cp, cp->solver);
    ms->time_solve_fill_coeffs += gettime() - start;

    start = gettime();
    if (reflevel > 0) {
        if (timestep % 2) {
            /* outer-most level for this solve, use extrapolated lapse as the
             * boundary condition */
            double time_interp_step = lapse_prev1_time[reflevel] - lapse_prev0_time[reflevel];
            double fact0, fact1;

            if (lapse_prev0_time[reflevel] == DBL_MAX &&
                lapse_prev1_time[reflevel] == DBL_MAX) {
                fact0 = 0.0;
                fact1 = 0.0;
            } else if (lapse_prev0_time[reflevel] == DBL_MAX) {
                fact0 = 0.0;
                fact1 = 1.0;
            } else {
                fact0 = (lapse_prev1_time[reflevel] - t) / time_interp_step;
                fact1 = (t - lapse_prev0_time[reflevel]) / time_interp_step;
            }

            LOGDEBUG( "extrapolating BCs from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

            for (int j = 0; j < cp->solver->fd_stencil; j++) {
                for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->domain_size + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, i + cp->offset_left[0], cp->y_idx, cp->offset_left[1] + cp->solver->domain_size - 1 + j);
                    lapse_mg[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
                }
            }
            for (int j = 0; j < cp->solver->fd_stencil; j++) {
                for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->domain_size + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, cp->offset_left[0] + cp->solver->domain_size - 1 + j, cp->y_idx, cp->offset_left[1] + i);
                    lapse_mg[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
                }
            }
        } else {
            /* use the solution from the coarser level as the initial guess */
            CoordPatch *cp1 = get_coord_patch(ms, reflevel - 1);

            ret = mg2d_init_guess(cp->solver, cp1->solver->u, cp1->solver->u_stride,
                                  (size_t [2]){ cp1->solver->domain_size, cp1->solver->domain_size },
                                  cp1->solver->step);
            if (ret < 0)
                CCTK_WARN(0, "Error setting the initial guess");
        }

        /* if the condition above was false, then lapse_mg should be filled by
         * prolongation from the coarser level
         * note that the reflection-boundary ghost points are not filled
         */

        /* fill the solver boundary conditions */
        for (int j = 0; j < cp->solver->fd_stencil; j++) {
            MG2DBoundary *bnd = cp->solver->boundaries[MG2D_BOUNDARY_1U];
            double *dst = bnd->val + j * bnd->val_stride;
            for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->domain_size + j; i++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, ABS(i) + cp->offset_left[0], cp->y_idx, cp->offset_left[1] + cp->solver->domain_size - 1 + j);
                dst[i] = lapse_mg[idx] - 1.0;
            }
        }
        for (int j = 0; j < cp->solver->fd_stencil; j++) {
            MG2DBoundary *bnd = cp->solver->boundaries[MG2D_BOUNDARY_0U];
            double *dst = bnd->val + j * bnd->val_stride;
            for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->domain_size + j; i++) {
                const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, cp->offset_left[1] + cp->solver->domain_size - 1 + j, cp->y_idx, cp->offset_left[1] + ABS(i));
                dst[i] = lapse_mg[idx] - 1.0;
            }
        }
    }
    ms->time_solve_boundaries += gettime() - start;

    /* do the elliptic solve */
    start = gettime();
    ret = mg2d_solve(cp->solver);
    if (ret < 0)
        CCTK_WARN(0, "Error solving the maximal slicing equation");
    ms->time_solve_mg2d += gettime() - start;

    /* export the result */
    start = gettime();
    solution_to_grid(cp, cp->solver, lapse_mg);

    lapse_mg1 = CCTK_VarDataPtr(cctkGH, 1, "MaximalSlicingAxiMG::lapse_mg");
    memcpy(lapse_mg1, lapse_mg, grid_size * sizeof(*lapse_mg1));
    ms->time_solve_export += gettime() - start;

    /* update lapse history for extrapolation */
    if (reflevel == 0 || !(timestep % 2)) {
        const double vel_fact = 1.0 / (1 << (reflevel - reflevel_top));

        start = gettime();
        for (size_t j = 0; j < grid_size; j++) {
            const double sol_new = lapse_mg[j];
            const double delta = sol_new - lapse_mg_eval[j];
            lapse_prev0[j] = lapse_prev1[j] + delta - delta * vel_fact;
            lapse_prev1[j] = sol_new;
            alpha[j]       = sol_new;
        }
        lapse_prev0_time[reflevel] = lapse_prev1_time[reflevel];
        lapse_prev1_time[reflevel] = cctkGH->cctk_time;

        ms->time_solve_history += gettime() - start;
    }

    ms->time_solve_mg += gettime() - mg_start;
    ms->count_solve_mg++;

finish:
    ms->time_solve += gettime() - total_start;
    ms->count_solve++;

    if (stats_every > 0 && reflevel == 0 && ms->count_solve > 0 && ms->count_eval > 0 &&
        !(ms->count_solve % stats_every))
        print_stats(ms);
}

void msa_mg_sync(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    LOGDEBUG( "\nsync %g %d\n\n", cctkGH->cctk_time, reflevel);

    return;
}

#if 0
static void maximal_slicing_axi_mg_old(CCTK_ARGUMENTS)
{
    CoordPatch *cp;

    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    double *coeffs = NULL;
    int i, ret;

    fprintf(stderr, "ms mg solve: level %d time %g\n", ctz(ms->gh->cctk_levfac[0]), ms->gh->cctk_time);

    cp = get_coord_patch(ms);

    fill_eq_coeffs(ms->gh, cp);

    CCTK_TimerStart("MaximalSlicingAxiMG_Solve");
    ret = mg2d_solve(cp->solver);
    if (ret < 0)
        CCTK_WARN(0, "Error solving the maximal slicing equation");
    CCTK_TimerStop("MaximalSlicingAxiMG_Solve");


    CCTK_TimerStart("MaximalSlicingAxiMG_Copy");
//#pragma omp parallel for
    for (int j = 0; j < cp->solver->domain_size; j++)
        for (int i = 0; i < cp->solver->domain_size; i++) {
            const int idx_dst = CCTK_GFINDEX3D(ms->gh, i + cp->offset_left[0], cp->y_idx, j + cp->offset_left[1]);
            const int idx_src = j * cp->solver->u_stride + i;
            alpha[idx_dst] = 1.0 + cp->solver->u[idx_src];
        }
    if (cp->level > 0) {
        /* fill in the interpolated outer buffer points */
        for (int idx_z = 0; idx_z < cp->offset_right[1]; idx_z++)
            for (int idx_x = 0; idx_x < cp->boundary_val_stride[0]; idx_x++) {
                const ptrdiff_t idx_src = idx_z * cp->boundary_val_stride[0] + idx_x;
                const ptrdiff_t idx_dst = CCTK_GFINDEX3D(ms->gh, cp->offset_left[0] + idx_x, cp->y_idx, ms->gh->cctk_lsh[2] - cp->offset_right[1] + idx_z);
                alpha[idx_dst] = cp->boundary_val[0][idx_src];
            }
        for (int idx_z = 0; idx_z < cp->boundary_val_stride[1]; idx_z++)
            for (int idx_x = 0; idx_x < cp->offset_right[0]; idx_x++) {
                const ptrdiff_t idx_src = idx_x * cp->boundary_val_stride[1] + idx_z;
                const ptrdiff_t idx_dst = CCTK_GFINDEX3D(ms->gh, ms->gh->cctk_lsh[0] - cp->offset_right[0] + idx_x, cp->y_idx,
                                                         cp->offset_left[1] + idx_z);
                alpha[idx_dst] = cp->boundary_val[1][idx_src];
            }
    }

    /* fill in the axial symmetry ghostpoints by mirroring */
    for (int idx_z = cp->offset_left[1]; idx_z < ms->gh->cctk_lsh[2]; idx_z++)
        for (int idx_x = 0; idx_x < cp->offset_left[0]; idx_x++) {
            const ptrdiff_t idx_dst = CCTK_GFINDEX3D(ms->gh, idx_x, cp->y_idx, idx_z);
            const ptrdiff_t idx_src = CCTK_GFINDEX3D(ms->gh, 2 * cp->offset_left[0] - idx_x, cp->y_idx, idx_z);
            alpha[idx_dst] = alpha[idx_src];
        }
    for (int idx_z = 0; idx_z < cp->offset_left[1]; idx_z++)
        for (int idx_x = 0; idx_x < ms->gh->cctk_lsh[0]; idx_x++) {
            const ptrdiff_t idx_dst = CCTK_GFINDEX3D(ms->gh, idx_x, cp->y_idx, idx_z);
            const ptrdiff_t idx_src = CCTK_GFINDEX3D(ms->gh, idx_x, cp->y_idx, 2 * cp->offset_left[1] - idx_z);
            alpha[idx_dst] = alpha[idx_src];
        }
    CCTK_TimerStop("MaximalSlicingAxiMG_Copy");
}
#endif

void msa_mg_init(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    int ret;
    int nb_levels_type;
    int nb_levels = *(int*)CCTK_ParameterGet("num_levels_1", "CarpetRegrid2", &nb_levels_type);

    ret = context_init(cctkGH, fd_stencil, maxiter, exact_size, nb_cycles,
                       nb_relax_pre, nb_relax_post, tol_residual, tol_residual_base,
                       cfl_factor, nb_levels,
                       loglevel, &ms);
    if (ret < 0)
        CCTK_WARN(0, "Error initializing the solver context");
}

void msa_mg_prestep(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    const double t = cctkGH->cctk_time;
    const int timestep = lrint(t * cctkGH->cctk_levfac[0] / cctkGH->cctk_delta_time);
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    cp = get_coord_patch(ms, reflevel);
    cp->cur_step = timestep;
}

void msa_mg_inithist(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];

    for (size_t i = 0; i < grid_size; i++)
        lapse_mg[i] = 1.0;

    for (int i = 0; i < 32; i++) {
        lapse_prev0_time[i] = DBL_MAX;
        lapse_prev1_time[i] = DBL_MAX;
    }
}

void maximal_slicing_axi_mg_modify_diss(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    double *epsdis;

    epsdis = CCTK_VarDataPtr(cctkGH, 0, "Dissipation::epsdisA");
    if (!epsdis)
        abort();

    cp = get_coord_patch(ms, reflevel);

    for (int idx_z = 0; idx_z < cp->grid_size[2]; idx_z++)
        for (int idx_x = cp->offset_left[0] + cp->solver->domain_size - (ms->fd_stencil + 1); idx_x < cp->grid_size[0]; idx_x++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
            epsdis[idx_dst] = 0.0;
        }

    for (int idx_x = 0; idx_x < cp->grid_size[0]; idx_x++)
        for (int idx_z = cp->offset_left[0] + cp->solver->domain_size - (ms->fd_stencil + 1); idx_z < cp->grid_size[2]; idx_z++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
            epsdis[idx_dst] = 0.0;
        }
}

void msa_mg_terminate_print_stats(CCTK_ARGUMENTS)
{
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    if (reflevel == 0 && ms) {
        print_stats(ms);
        context_free(&ms);
    }
}