summaryrefslogtreecommitdiff
path: root/src/maximal_slicing_axi_mg.c
blob: 457351375c39365ef3a5064ab6f7f406152dd9f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <mg2d.h>
#include <mg2d_boundary.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Timers.h"
#include "util_Table.h"

#include <mpi.h>

#define SQR(x) ((x) * (x))
#define ABS(x) ((x >= 0) ? (x) : -(x))
#define MIN(x, y) ((x) > (y) ? (y) : (x))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define ARRAY_ELEMS(x) (sizeof(x) / sizeof(*x))

#define CPINDEX(cp, i, j, k) ((k * cp->grid_size[1] + j) * cp->grid_size[0] + i)

#if 0
#define LOGDEBUG(...) fprintf(stderr, __VA_ARGS__)
#else
#define LOGDEBUG
#endif

#define mg_assert(x)                                    \
do {                                                    \
    if (!(x)) {                                         \
        fprintf(stderr, "Assertion " #x " failed\n");   \
        abort();                                        \
    }                                                   \
} while (0)

static const struct {
    const char *str;
    enum MG2DLogLevel level;
} log_levels[] = {
    { "fatal",   MG2D_LOG_FATAL   },
    { "error",   MG2D_LOG_ERROR   },
    { "warning", MG2D_LOG_WARNING },
    { "info",    MG2D_LOG_INFO    },
    { "verbose", MG2D_LOG_VERBOSE },
    { "debug",   MG2D_LOG_DEBUG   },
};

#include <sys/time.h>
static inline int64_t gettime(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
}

/* precomputed values for a given refined grid */
typedef struct CoordPatch {
    int    level;
    ptrdiff_t grid_size[3];

    MG2DContext *solver;
    MPI_Comm     solver_comm;

    int cur_step;
    MG2DContext **solver_eval;
    MPI_Comm     *solver_eval_comm;
    int        nb_solver_eval;

    ptrdiff_t y_idx;

    size_t *extents;
    int  nb_extents;

    /* number of x/z grid points by which the elliptic solver domain is offset
     * from the cactus grid */
    ptrdiff_t offset_left[2];
    int bnd_intercomp[2][2];

    /* MPI sync for the outer ghostzones */
    MPI_Datatype synctype;
    int       nb_components;
    int          *sendcounts;
    int          *senddispl;
    MPI_Datatype *sendtypes;
    int          *recvcounts;
    int          *recvdispl;
    MPI_Datatype *recvtypes;

    /* MPI sync for the initial guess */
    ptrdiff_t (*solver_start)[2];
    size_t    (*solver_size)[2];
    double   *u_guess;
    ptrdiff_t u_guess_stride;
    ptrdiff_t u_guess_start[2];
    size_t    u_guess_size[2];

    int          *u_guess_sendcounts;
    int          *u_guess_senddispl;
    MPI_Datatype *u_guess_sendtypes;
    int          *u_guess_recvcounts;
    int          *u_guess_recvdispl;
    MPI_Datatype *u_guess_recvtypes;
} CoordPatch;

typedef struct MSMGContext {
    cGH *gh;

    int fd_stencil;
    int maxiter;
    int max_exact_size;
    int nb_cycles;
    int nb_relax_post;
    int nb_relax_pre;
    double tol_residual;
    double tol_residual_base;
    double cfl_factor;

    double base_dt;
    int nb_levels;

    CoordPatch *patches;
    int nb_patches;

    int log_level;

    /* timings */
    int64_t time_solve;
    int64_t count_solve;

    int64_t time_solve_mg;
    int64_t count_solve_mg;
    int64_t time_solve_fill_coeffs;
    int64_t time_solve_boundaries;
    int64_t time_solve_mg2d;
    int64_t time_solve_export;
    int64_t time_solve_history;

    int64_t time_eval;
    int64_t count_eval;

    int64_t time_extrapolate;
    int64_t count_extrapolate;

    int64_t time_fine_solve;
    int64_t count_fine_solve;
    int64_t time_fine_fill_coeffs;
    int64_t time_fine_boundaries;
    int64_t time_fine_mg2d;
    int64_t time_fine_export;
    int64_t time_init_guess_eval;

    int64_t time_mpi_sync;
} MSMGContext;

static MSMGContext *ms;

static int ctz(int a)
{
    int ret = 0;

    if (!a)
        return INT_MAX;

    while (!(a & 1)) {
        a >>= 1;
        ret++;
    }

    return ret;
}

static void coord_patch_free(CoordPatch *cp)
{
    mg2d_solver_free(&cp->solver);
    if (cp->solver_comm != MPI_COMM_NULL)
        MPI_Comm_free(&cp->solver_comm);

    for (int i = 0; i < cp->nb_solver_eval; i++) {
        mg2d_solver_free(&cp->solver_eval[i]);
        if (cp->solver_eval_comm[i] != MPI_COMM_NULL)
            MPI_Comm_free(&cp->solver_eval_comm[i]);
    }
    free(cp->solver_eval);
    cp->solver_eval    = NULL;
    cp->nb_solver_eval = 0;

    free(cp->extents);

    if (cp->synctype)
        MPI_Type_free(&cp->synctype);
    free(cp->sendcounts);
    free(cp->senddispl);
    free(cp->sendtypes);
    free(cp->recvcounts);
    free(cp->recvdispl);
    free(cp->recvtypes);

    if (cp->u_guess_sendtypes) {
        for (int i = 0; i < cp->nb_components; i++)
            if (cp->u_guess_sendtypes[i] != MPI_DATATYPE_NULL)
                MPI_Type_free(&cp->u_guess_sendtypes[i]);
    }
    if (cp->u_guess_recvtypes) {
        for (int i = 0; i < cp->nb_components; i++)
            if (cp->u_guess_recvtypes[i] != MPI_DATATYPE_NULL)
                MPI_Type_free(&cp->u_guess_recvtypes[i]);
    }
    free(cp->u_guess);
    free(cp->u_guess_sendcounts);
    free(cp->u_guess_senddispl);
    free(cp->u_guess_sendtypes);
    free(cp->u_guess_recvcounts);
    free(cp->u_guess_recvdispl);
    free(cp->u_guess_recvtypes);
    free(cp->solver_size);
    free(cp->solver_start);
}

static void log_callback(const MG2DContext *ctx, int level,
                         const char *fmt, va_list vl)
{
    MSMGContext *ms = ctx->opaque;
    int target_level = ms->log_level;
    uint8_t buf[1024];
    int ret;

    if (level > target_level)
        return;

    ret = snprintf(buf, sizeof(buf), "[%d] t=%g ", ctz(ms->gh->cctk_levfac[0]), ms->gh->cctk_time);
    if (ret >= sizeof(buf))
        return;
    vsnprintf(buf + ret, sizeof(buf) - ret, fmt, vl);
    fputs(buf, stderr);
}

static MG2DContext *solver_alloc(MSMGContext *ms, int level,
                                 size_t component_start[2], size_t component_size[2],
                                 double step, MPI_Comm comm)
{
    const char *omp_threads = getenv("OMP_NUM_THREADS");

    MG2DContext *solver;

    mg_assert(comm != MPI_COMM_NULL ||
              (component_start[0] == 0 && component_start[1] == 0 && component_size[0] == component_size[1]));

    if (comm != MPI_COMM_NULL)
        solver = mg2d_solver_alloc_mpi(comm, component_start, component_size);
    else
        solver = mg2d_solver_alloc(component_size[0]);
    if (!solver)
        return NULL;

    solver->step[0] = step;
    solver->step[1] = solver->step[0];

    solver->fd_stencil = ms->fd_stencil;

    solver->boundaries[MG2D_BOUNDARY_0L]->type = MG2D_BC_TYPE_REFLECT;
    solver->boundaries[MG2D_BOUNDARY_1L]->type = MG2D_BC_TYPE_REFLECT;
    solver->boundaries[MG2D_BOUNDARY_0U]->type = level ? MG2D_BC_TYPE_FIXVAL : MG2D_BC_TYPE_FALLOFF;
    solver->boundaries[MG2D_BOUNDARY_1U]->type = level ? MG2D_BC_TYPE_FIXVAL : MG2D_BC_TYPE_FALLOFF;

    solver->maxiter   = ms->maxiter;
    if (ms->tol_residual_base > 0.0)
        solver->tol = ms->tol_residual_base / SQR(solver->step[0]);
    else
        solver->tol = ms->tol_residual;
    solver->nb_cycles      = ms->nb_cycles;
    solver->nb_relax_post  = ms->nb_relax_post;
    solver->nb_relax_pre   = ms->nb_relax_pre;
    solver->cfl_factor     = ms->cfl_factor;
    solver->max_exact_size = ms->max_exact_size;

    solver->opaque       = ms;
    solver->log_callback = log_callback;

    if (omp_threads)
        solver->nb_threads = strtol(omp_threads, NULL, 0);
    if (solver->nb_threads <= 0)
        solver->nb_threads = 1;

    /* initialize boundary values to zero,
     * non-zero values on the outer boundaries of refined levels are filled in elsewhere */
    for (int i = 0; i < 4; i++) {
        int ci = mg2d_bnd_coord_idx(i);
        for (size_t j = 0; j < solver->fd_stencil; j++) {
            memset(solver->boundaries[i]->val + j * solver->boundaries[i]->val_stride - j,
                   0, sizeof(*solver->boundaries[i]->val) * (component_size[!ci] + 2 * j));
        }
    }

    return solver;
}

/**
 * Compute the refinement level geometry.
 *
 * The level is assumed to be a single square patch that is composed of
 * nProcs components. The lower x and z boundaries are assumed to be reflection.
 * For our purposes, both the physical outer boundaries and the refinement
 * boundaries are equivalent, while the intercomponent boundaries are treated
 * differently. Since Cactus only allows distinguishing between "physical" and
 * "all other" boundaries, we need to compute the extents manually.
 *
 * @param level_size will contain the number of points in x/z directions on the
 * complete refinement level, including all the ghost zones up to the outer
 * level boundary.
 *
 * @param component_start indices of the component origin in the refinement level
 *
 * @param component_size number of points owned by this component; when the
 * component is on the outer level boundary, this includes all the ghost zones
 * up to the outer boundary.
 */
static void get_extents(size_t **pextents, int *level_size, cGH *gh)
{
    int nb_procs   = CCTK_nProcs(gh);
    int local_proc = CCTK_MyProc(gh);

    size_t *extents;

    extents = calloc(nb_procs, 4 * sizeof(*extents));
    if (!extents)
        CCTK_WARN(0, "Error allocating the extents");

    for (int dir = 0; dir < 2; dir++) {
        extents[4 * local_proc + 0 + dir]  = gh->cctk_lbnd[2 * dir];
        extents[4 * local_proc + 2 + dir]  = gh->cctk_lsh[2 * dir] - gh->cctk_nghostzones[2 * dir];
    }

    if (nb_procs > 1)
        MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, extents, 4 * sizeof(*extents), MPI_BYTE, MPI_COMM_WORLD);

    level_size[0] = 0;
    level_size[1] = 0;

    for (int dir = 0; dir < 2; dir++) {
        for (int comp = 0; comp < nb_procs; comp++) {
            size_t start = extents[4 * comp + 0 + dir];
            size_t size  = extents[4 * comp + 2 + dir];
            if (start + size > level_size[dir])
                level_size[dir] = start + size;
        }

        // if the upper boundary is an inter-component boundary, substract the ghost zones
        for (int comp = 0; comp < nb_procs; comp++) {
            size_t start = extents[4 * comp + 0 + dir];
            size_t size  = extents[4 * comp + 2 + dir];

            if (start + size < level_size[dir])
                extents[4 * comp + 2 + dir] -= gh->cctk_nghostzones[2 * dir];
        }
    }

    *pextents   = extents;
}

static CoordPatch *get_coord_patch(MSMGContext *ms, int level)
{
    cGH *gh = ms->gh;

    const int nb_procs   = CCTK_nProcs(gh);
    const int local_proc = CCTK_MyProc(gh);

    const size_t grid_size = gh->cctk_lsh[2] * gh->cctk_lsh[1] * gh->cctk_lsh[0];
    const double *a_x = CCTK_VarDataPtr(gh, 0, "grid::x");
    const double *a_y = CCTK_VarDataPtr(gh, 0, "grid::y");
    const double *a_z = CCTK_VarDataPtr(gh, 0, "grid::z");

    const int gx = gh->cctk_nghostzones[0];
    const int gz = gh->cctk_nghostzones[2];

    CoordPatch *cp;

    size_t *extents;
    size_t component_start[2], component_size[2];

    int *solver_ranks;
    int nb_solver_ranks;

    int level_size[2];
    int bnd_intercomp[2][2];
    int integrator_substeps = MoLNumIntegratorSubsteps();
    int i, ret;

    for (int i = 0; i < ms->nb_patches; i++) {
        cp = &ms->patches[i];

        if (cp->level == level)
            return cp;
    }

    /* create a new patch */
    ms->patches = realloc(ms->patches, sizeof(*ms->patches) * (ms->nb_patches + 1));
    cp = &ms->patches[ms->nb_patches];

    memset(cp, 0, sizeof(*cp));

    cp->level = ctz(ms->gh->cctk_levfac[0]);
    cp->grid_size[0] = gh->cctk_lsh[0];
    cp->grid_size[1] = gh->cctk_lsh[1];
    cp->grid_size[2] = gh->cctk_lsh[2];

    for (i = 0; i < gh->cctk_lsh[1]; i++)
        if (fabs(a_y[CCTK_GFINDEX3D(gh, 0, i, 0)]) < 1e-8) {
            cp->y_idx = i;
            break;
        }
    if (i == gh->cctk_lsh[1])
        CCTK_WARN(0, "The grid does not include y==0");

    get_extents(&extents, level_size, gh);
    component_start[0] = extents[4 * local_proc + 0 + 0];
    component_start[1] = extents[4 * local_proc + 0 + 1];
    component_size[0]  = extents[4 * local_proc + 2 + 0];
    component_size[1]  = extents[4 * local_proc + 2 + 1];
    for (int dir = 0; dir < 2; dir++) {
        cp->bnd_intercomp[dir][0] = component_start[dir] > 0;
        cp->bnd_intercomp[dir][1] = (component_start[dir] + component_size[dir]) < level_size[dir];
        cp->offset_left[dir]      = gh->cctk_nghostzones[2 * dir];
    }

    if (level_size[0] != level_size[1])
        CCTK_WARN(0, "The refinement level is non-square, only square levels are supported");

    solver_ranks = calloc(nb_procs, sizeof(*solver_ranks));
    if (!solver_ranks)
        CCTK_WARN(0, "Error allocating solver ranks");

    cp->nb_components = nb_procs;
    cp->solver_size  = calloc(nb_procs, sizeof(*cp->solver_size));
    cp->solver_start = calloc(nb_procs, sizeof(*cp->solver_start));
    if (!cp->solver_size || !cp->solver_start)
        CCTK_WARN(0, "Error allocating solver sizes/starts");

    /* on the finest level we allocate a solver for each of the substeps
     * between the coarser-grid timelevels */
    if (level == ms->nb_levels - 1) {
        cp->nb_solver_eval   = 2 * integrator_substeps;
        cp->solver_eval      = calloc(cp->nb_solver_eval, sizeof(*cp->solver_eval));
        cp->solver_eval_comm = calloc(cp->nb_solver_eval, sizeof(*cp->solver_eval_comm));
        if (!cp->solver_eval || !cp->solver_eval_comm)
            CCTK_WARN(0, "Error allocating solvers");

        for (int step = 0; step < 2; step++)
            for (int substep = 0; substep < integrator_substeps; substep++) {
                int   solver_idx = step * integrator_substeps + substep;
                MG2DContext *s;
                size_t size[2];

                nb_solver_ranks = 0;
                for (int proc = 0; proc < nb_procs; proc++) {
                    size_t size_tmp[2];
                    for (int dir = 0; dir < 2; dir++) {
                        size_t offset = (ms->fd_stencil - 1) + ms->gh->cctk_nghostzones[2 * dir] * solver_idx;
                        size_t start = extents[4 * proc + 0 + dir];
                        size_t   end = MIN(start + extents[4 * proc + 2 + dir], level_size[dir] - offset);
                        size_tmp[dir] = end > start ? end - start : 0;
                    }

                    if (size_tmp[0] > 0 && size_tmp[1] > 0)
                        solver_ranks[nb_solver_ranks++] = proc;

                    if (proc == local_proc) {
                        size[0] = size_tmp[0];
                        size[1] = size_tmp[1];
                    }
                }

                if (nb_solver_ranks > 1) {
                    MPI_Group grp_world, grp_solver;

                    MPI_Comm_group(MPI_COMM_WORLD, &grp_world);
                    MPI_Group_incl(grp_world, nb_solver_ranks, solver_ranks, &grp_solver);
                    MPI_Comm_create(MPI_COMM_WORLD, grp_solver, &cp->solver_eval_comm[solver_idx]);
                    MPI_Group_free(&grp_solver);
                    MPI_Group_free(&grp_world);
                } else
                    cp->solver_eval_comm[solver_idx] = MPI_COMM_NULL;

                if (size[0] > 0 && size[1] > 0) {
                    s = solver_alloc(ms, level, component_start, size,
                                     a_x[1] - a_x[0], cp->solver_eval_comm[solver_idx]);
                    if (!s)
                        CCTK_WARN(0, "Error allocating the solver");

                    cp->solver_eval[solver_idx] = s;
                }
            }

        /* carpet does only syncs the domain interior, which includes the
         * buffer points, but excludes the outermost layer of ghost points,
         * which are normally filled by prolongation from the coarser grid.
         * since this solver sets those points after the solve for the first MoL
         * step, we need to sync them manually */
        if (nb_procs > 1) {
            int is_upper_x = component_start[0] + component_size[0] == level_size[0];
            int is_upper_z = component_start[1] + component_size[1] == level_size[1];
            int comp;

            cp->sendcounts = calloc(nb_procs, sizeof(*cp->sendcounts));
            cp->senddispl  = calloc(nb_procs, sizeof(*cp->senddispl));
            cp->sendtypes  = calloc(nb_procs, sizeof(*cp->sendtypes));
            cp->recvcounts = calloc(nb_procs, sizeof(*cp->recvcounts));
            cp->recvdispl  = calloc(nb_procs, sizeof(*cp->recvdispl));
            cp->recvtypes  = calloc(nb_procs, sizeof(*cp->recvtypes));
            if (!cp->sendcounts || !cp->senddispl || !cp->sendtypes ||
                !cp->recvcounts || !cp->recvdispl || !cp->recvtypes)
                CCTK_WARN(0, "Error allocating sync arrays");

            MPI_Type_vector(gz, gx, ms->gh->cctk_lsh[0], MPI_DOUBLE, &cp->synctype);
            MPI_Type_commit(&cp->synctype);

            /* this component touches the upper z boundary */
            if (is_upper_z) {
                /* there is a component to the left of us */
                if (component_start[0] > 0) {
                    for (comp = 0; comp < nb_procs; comp++) {
                        size_t comp_start_x = extents[4 * comp + 0 + 0];
                        size_t comp_start_z = extents[4 * comp + 0 + 1];
                        size_t comp_size_x  = extents[4 * comp + 2 + 0];
                        size_t comp_size_z  = extents[4 * comp + 2 + 1];

                        if (comp_start_z + comp_size_z == level_size[1] &&
                            comp_start_x + comp_size_x == component_start[0])
                            break;
                    }
                    mg_assert(comp < nb_procs);
                    cp->sendcounts[comp] = 1;
                    cp->recvcounts[comp] = 1;
                    cp->sendtypes[comp]  = cp->synctype;
                    cp->recvtypes[comp]  = cp->synctype;
                    cp->senddispl[comp]  = ((gh->cctk_lsh[2] - gz) * gh->cctk_lsh[0] + gx) * sizeof(double);
                    cp->recvdispl[comp]  = ((gh->cctk_lsh[2] - gz) * gh->cctk_lsh[0] +  0) * sizeof(double);
                }
                /* there is a component to the right of us */
                if (!is_upper_x) {
                    for (comp = 0; comp < nb_procs; comp++) {
                        size_t comp_start_x = extents[4 * comp + 0 + 0];
                        size_t comp_start_z = extents[4 * comp + 0 + 1];
                        size_t comp_size_x  = extents[4 * comp + 2 + 0];
                        size_t comp_size_z  = extents[4 * comp + 2 + 1];

                        if (comp_start_z + comp_size_z == level_size[1] &&
                            comp_start_x == component_start[0] + component_size[0])
                            break;
                    }
                    mg_assert(comp < nb_procs);
                    cp->sendcounts[comp] = 1;
                    cp->recvcounts[comp] = 1;
                    cp->sendtypes[comp]  = cp->synctype;
                    cp->recvtypes[comp]  = cp->synctype;
                    cp->senddispl[comp]  = ((gh->cctk_lsh[2] - gz) * gh->cctk_lsh[0] +
                                            (gh->cctk_lsh[0] - gx * 2)) * sizeof(double);
                    cp->recvdispl[comp]  = ((gh->cctk_lsh[2] - gz) * gh->cctk_lsh[0] +
                                            (gh->cctk_lsh[0] - gx)) * sizeof(double);
                }
            }
            /* this component touches the upper x boundary */
            if (is_upper_x) {
                /* there is a component below us */
                if (component_start[1] > 0) {
                    for (comp = 0; comp < nb_procs; comp++) {
                        size_t comp_start_x = extents[4 * comp + 0 + 0];
                        size_t comp_start_z = extents[4 * comp + 0 + 1];
                        size_t comp_size_x  = extents[4 * comp + 2 + 0];
                        size_t comp_size_z  = extents[4 * comp + 2 + 1];

                        if (comp_start_x + comp_size_x == level_size[0] &&
                            comp_start_z + comp_size_z == component_start[1])
                            break;
                    }
                    mg_assert(comp < nb_procs);
                    cp->sendcounts[comp] = 1;
                    cp->recvcounts[comp] = 1;
                    cp->sendtypes[comp]  = cp->synctype;
                    cp->recvtypes[comp]  = cp->synctype;
                    cp->senddispl[comp]  = (gz * gh->cctk_lsh[0] + gh->cctk_lsh[0] - gx) * sizeof(double);
                    cp->recvdispl[comp]  = (                     + gh->cctk_lsh[0] - gx) * sizeof(double);
                }
                /* there is a component above us */
                if (!is_upper_z) {
                    for (comp = 0; comp < nb_procs; comp++) {
                        size_t comp_start_x = extents[4 * comp + 0 + 0];
                        size_t comp_start_z = extents[4 * comp + 0 + 1];
                        size_t comp_size_x  = extents[4 * comp + 2 + 0];
                        size_t comp_size_z  = extents[4 * comp + 2 + 1];

                        if (comp_start_x + comp_size_x == level_size[0] &&
                            comp_start_z == component_start[1] + component_size[1])
                            break;
                    }
                    mg_assert(comp < nb_procs);
                    cp->sendcounts[comp] = 1;
                    cp->recvcounts[comp] = 1;
                    cp->sendtypes[comp]  = cp->synctype;
                    cp->recvtypes[comp]  = cp->synctype;
                    cp->senddispl[comp]  = ((gh->cctk_lsh[2] - gz * 2) * gh->cctk_lsh[0] +
                                            (gh->cctk_lsh[0] - gx)) * sizeof(double);
                    cp->recvdispl[comp]  = ((gh->cctk_lsh[2] - gz) * gh->cctk_lsh[0] +
                                            (gh->cctk_lsh[0] - gx)) * sizeof(double);
                }
            }

            for (int comp = 0; comp < nb_procs; comp++) {
                mg_assert(!!cp->sendtypes[comp] == !!cp->recvtypes[comp]);
                if (!cp->sendtypes[comp]) {
                    cp->sendtypes[comp] = MPI_BYTE;
                    cp->recvtypes[comp] = MPI_BYTE;
                }
            }
        }

    }

    nb_solver_ranks = 0;
    for (int proc = 0; proc < nb_procs; proc++) {
        for (int dir = 0; dir < 2; dir++) {
            size_t start = extents[4 * proc + 0 + dir];
            size_t   end = start + extents[4 * proc + 2 + dir];
            ptrdiff_t offset_right;

            offset_right = gh->cctk_nghostzones[2 * dir];
            /* account for grid tapering on refined levels */
            if (cp->level > 0)
                offset_right *= integrator_substeps * 2;
            ///* the outer boundary layer overlaps with the first ghost zone */
            //if (cp->level > 0)
            //    offset_right++;
            if (cp->level > 0)
                offset_right--;
            if (cp->level > 0)
                offset_right--;

            end = MIN(end, level_size[dir] - offset_right);
            if (end > start) {
                cp->solver_start[proc][dir] = start;
                cp->solver_size[proc][dir]  = end - start;
            } else {
                cp->solver_start[proc][dir] = 0;
                cp->solver_size[proc][dir]  = 0;
            }
        }

        if (cp->solver_size[proc][0] > 0 && cp->solver_size[proc][1] > 0)
            solver_ranks[nb_solver_ranks++] = proc;
    }

    if (nb_solver_ranks > 1) {
        MPI_Group grp_world, grp_solver;

        MPI_Comm_group(MPI_COMM_WORLD, &grp_world);
        MPI_Group_incl(grp_world, nb_solver_ranks, solver_ranks, &grp_solver);
        MPI_Comm_create(MPI_COMM_WORLD, grp_solver, &cp->solver_comm);
        MPI_Group_free(&grp_solver);
        MPI_Group_free(&grp_world);
    } else
        cp->solver_comm = MPI_COMM_NULL;

    if (cp->solver_size[local_proc][0] > 0 && cp->solver_size[local_proc][1] > 0) {
        cp->solver = solver_alloc(ms, level, cp->solver_start[local_proc], cp->solver_size[local_proc],
                                  a_x[1] - a_x[0], cp->solver_comm);
        if (!cp->solver)
            CCTK_WARN(0, "Error allocating the solver");
    }

    free(solver_ranks);

    cp->extents    = extents;
    cp->nb_extents = nb_procs;

    ms->nb_patches++;
    return cp;
}

static void print_stats(MSMGContext *ms)
{
    int orig_log_level;
    int64_t total = ms->time_solve + ms->time_eval;

    fprintf(stderr, "%2.2f%% eval: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_eval * 100.0 / total, ms->count_eval,
            ms->time_eval / 1e6, ms->time_eval / 1e3 / ms->count_eval);
    fprintf(stderr, "  %2.2f%% eval extrapolate: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_extrapolate * 100.0 / total, ms->count_extrapolate,
            ms->time_extrapolate / 1e6, ms->time_extrapolate / 1e3 / ms->count_extrapolate);
    fprintf(stderr, "  %2.2f%% fine solve: %ld runs; %g s total; %g ms avg per run || "
            "%2.2f%% fill coeffs %2.2f%% boundaries %2.2f%% mg2d %2.2f%% export\n",
            (double)ms->time_fine_solve * 100.0 / total, ms->count_fine_solve,
            ms->time_fine_solve / 1e6, ms->time_fine_solve / 1e3 / ms->count_fine_solve,
            (double)ms->time_fine_fill_coeffs * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_boundaries  * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_mg2d        * 100.0 / ms->time_fine_solve,
            (double)ms->time_fine_export      * 100.0 / ms->time_fine_solve);

    fprintf(stderr, "%2.2f%% solve: %ld runs; %g s total; %g ms avg per run\n",
            (double)ms->time_solve * 100.0 / total, ms->count_solve,
            ms->time_solve / 1e6, ms->time_solve / 1e3 / ms->count_solve);
    fprintf(stderr, "  %2.2f%% solve mg2d: %ld runs; %g s total; %g ms avg per run || "
            "%2.2f%% fill coeffs %2.2f%% boundaries %2.2f%% mg2d %2.2f%% export %2.2f%% history\n",
            (double)ms->time_solve_mg * 100.0 / total, ms->count_solve_mg,
            ms->time_solve_mg / 1e6, ms->time_solve_mg / 1e3 / ms->count_solve_mg,
            (double)ms->time_solve_fill_coeffs * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_boundaries  * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_mg2d        * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_export      * 100.0 / ms->time_solve_mg,
            (double)ms->time_solve_history     * 100.0 / ms->time_solve_mg);

    orig_log_level = ms->log_level;
    ms->log_level = MG2D_LOG_VERBOSE;

    for (int i = 0; i < ms->nb_patches; i++) {
        CoordPatch *cp = get_coord_patch(ms, i);
        char indent_buf[64];

        snprintf(indent_buf, sizeof(indent_buf), " [%d] ", i);

        if (cp->solver)
            mg2d_print_stats(cp->solver, indent_buf);

        for (int j = 0; j < cp->nb_solver_eval; j++) {
            if (!cp->solver_eval[j])
                continue;
            snprintf(indent_buf, sizeof(indent_buf), " [%d/%d] ", i, j);
            mg2d_print_stats(cp->solver_eval[j], indent_buf);
        }
    }
    ms->log_level = orig_log_level;
}

static int context_init(cGH *gh, int fd_stencil, int maxiter, int exact_size, int nb_cycles,
                        int nb_relax_pre, int nb_relax_post, double tol_residual, double tol_residual_base,
                        double cfl_factor, int nb_levels,
                        const char *loglevel_str,
                        MSMGContext **ctx)
{
    MSMGContext *ms;
    int loglevel = -1;

    ms = calloc(1, sizeof(*ms));
    if (!ms)
        return -ENOMEM;

    ms->gh = gh;
    ms->fd_stencil    = fd_stencil;
    ms->maxiter       = maxiter;
    ms->max_exact_size = exact_size;
    ms->nb_cycles     = nb_cycles;
    ms->nb_relax_pre  = nb_relax_pre;
    ms->nb_relax_post = nb_relax_post;
    ms->tol_residual  = tol_residual;
    ms->tol_residual_base = tol_residual_base;
    ms->cfl_factor    = cfl_factor;
    ms->base_dt         = gh->cctk_delta_time;
    ms->nb_levels       = nb_levels;

    for (int i = 0; i < ARRAY_ELEMS(log_levels); i++) {
        if (!strcmp(loglevel_str, log_levels[i].str)) {
            loglevel = log_levels[i].level;
            break;
        }
    }
    if (loglevel < 0) {
        fprintf(stderr, "Invalid loglevel: %s\n", loglevel_str);
        return -EINVAL;
    }

    ms->log_level = loglevel;

    *ctx = ms;

    return 0;
}

static void context_free(MSMGContext **pms)
{
    MSMGContext *ms = *pms;

    if (!ms)
        return;

    for (int i = 0; i < ms->nb_patches; i++)
        coord_patch_free(&ms->patches[i]);
    free(ms->patches);

    free(ms);
    *pms = NULL;
}

static void fill_eq_coeffs(MSMGContext *ctx, CoordPatch *cp, MG2DContext *solver)
{
    cGH *gh = ctx->gh;
    int ret;

    const ptrdiff_t stride_z = CCTK_GFINDEX3D(gh, 0, 0, 1);

    double *a_x = CCTK_VarDataPtr(gh, 0, "grid::x");
    double *a_z = CCTK_VarDataPtr(gh, 0, "grid::z");

    const double dx = a_x[1] - a_x[0];
    const double dz = a_z[stride_z] - a_z[0];

    double *a_gtxx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt11");
    double *a_gtyy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt22");
    double *a_gtzz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt33");
    double *a_gtxy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt12");
    double *a_gtxz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt13");
    double *a_gtyz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::gt23");
    double *a_Atxx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At11");
    double *a_Atyy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At22");
    double *a_Atzz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At33");
    double *a_Atxy = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At12");
    double *a_Atxz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At13");
    double *a_Atyz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::At23");
    double  *a_phi = CCTK_VarDataPtr(gh, 0, "ML_BSSN::phi");
    double  *a_Xtx = CCTK_VarDataPtr(gh, 0, "ML_BSSN::Xt1");
    double  *a_Xtz = CCTK_VarDataPtr(gh, 0, "ML_BSSN::Xt3");

    solver->diff_coeffs[MG2D_DIFF_COEFF_20]->boundaries[MG2D_BOUNDARY_0L].flags = MG2D_DC_FLAG_DISCONT;
    solver->diff_coeffs[MG2D_DIFF_COEFF_10]->boundaries[MG2D_BOUNDARY_0L].flags = MG2D_DC_FLAG_POLE;

#pragma omp parallel for
    for (int idx_z = 0; idx_z < solver->local_size[1]; idx_z++)
        for (int idx_x = 0; idx_x < solver->local_size[0]; idx_x++) {
            const int idx_src = CCTK_GFINDEX3D(gh, idx_x + cp->offset_left[0], cp->y_idx, idx_z + cp->offset_left[1]);
            const int idx_dc  = idx_z * solver->diff_coeffs[0]->stride + idx_x;
            const int idx_rhs = idx_z * solver->rhs_stride + idx_x;

            const double x = a_x[idx_src];
            const int on_axis = fabs(x) < 1e-13;

            const double gtxx = a_gtxx[idx_src];
            const double gtyy = a_gtyy[idx_src];
            const double gtzz = a_gtzz[idx_src];
            const double gtxy = a_gtxy[idx_src];
            const double gtxz = a_gtxz[idx_src];
            const double gtyz = a_gtyz[idx_src];
            const double Atxx = a_Atxx[idx_src];
            const double Atyy = a_Atyy[idx_src];
            const double Atzz = a_Atzz[idx_src];
            const double Atxy = a_Atxy[idx_src];
            const double Atxz = a_Atxz[idx_src];
            const double Atyz = a_Atyz[idx_src];
            const double  phi =  a_phi[idx_src];
            const double  Xtx =  a_Xtx[idx_src];
            const double  Xtz =  a_Xtz[idx_src];

            const double det = gtxx * gtyy * gtzz + 2 * gtxy * gtyz * gtxz - gtzz * SQR(gtxy) - SQR(gtxz) * gtyy - gtxx * SQR(gtyz);

            const double At[3][3] = {
                { Atxx, Atxy, Atxz },
                { Atxy, Atyy, Atyz },
                { Atxz, Atyz, Atzz }};


            double Xx, Xz, k2;
            double phi_dx, phi_dz;

            double Am[3][3], gtu[3][3];

            if (ctx->fd_stencil == 1) {
                phi_dx = (a_phi[idx_src + 1] - a_phi[idx_src - 1]) / (2.0 * dx);
                phi_dz = (a_phi[idx_src + stride_z] - a_phi[idx_src - stride_z]) / (2.0 * dz);
            } else {
                phi_dx = (-1.0 * a_phi[idx_src + 2] + 8.0 * a_phi[idx_src + 1] - 8.0 * a_phi[idx_src - 1] + a_phi[idx_src - 2]) / (12.0 * dx);
                phi_dz = (-1.0 * a_phi[idx_src + 2 * stride_z] + 8.0 * a_phi[idx_src + 1 * stride_z] - 8.0 * a_phi[idx_src - 1 * stride_z] + a_phi[idx_src - 2 * stride_z]) / (12.0 * dz);
            }

            gtu[0][0] =  (gtyy * gtzz - SQR(gtyz)) / det;
            gtu[1][1] =  (gtxx * gtzz - SQR(gtxz)) / det;
            gtu[2][2] =  (gtxx * gtyy - SQR(gtxy)) / det;
            gtu[0][1] = -(gtxy * gtzz - gtyz * gtxz) / det;
            gtu[0][2] =  (gtxy * gtyz - gtyy * gtxz) / det;
            gtu[1][2] = -(gtxx * gtyz - gtxy * gtxz) / det;
            gtu[1][0] = gtu[0][1];
            gtu[2][0] = gtu[0][2];
            gtu[2][1] = gtu[1][2];

            for (int j = 0; j < 3; j++)
                for (int k = 0; k < 3; k++) {
                    double val = 0.0;
                    for (int l = 0; l < 3; l++)
                        val += gtu[j][l] * At[l][k];
                    Am[j][k] = val;
                }

            // K_{ij} K^{ij}
            k2 = 0.0;
            for (int j = 0; j < 3; j++)
                for (int k = 0; k < 3; k++)
                    k2 += Am[j][k] * Am[k][j];

            Xx = SQR(phi) * (Xtx + (phi_dx * gtu[0][0] + phi_dz * gtu[0][2]) / phi);
            Xz = SQR(phi) * (Xtz + (phi_dx * gtu[0][2] + phi_dz * gtu[2][2]) / phi);

            solver->diff_coeffs[MG2D_DIFF_COEFF_20]->data[idx_dc] = SQR(phi) * (gtu[0][0] + (on_axis ? gtu[1][1] : 0.0));
            solver->diff_coeffs[MG2D_DIFF_COEFF_02]->data[idx_dc] = SQR(phi) * gtu[2][2];
            solver->diff_coeffs[MG2D_DIFF_COEFF_11]->data[idx_dc] = SQR(phi) * gtu[0][2] * 2;
            solver->diff_coeffs[MG2D_DIFF_COEFF_10]->data[idx_dc] = -Xx + (on_axis ? 0.0 : SQR(phi) * gtu[1][1] / x);
            solver->diff_coeffs[MG2D_DIFF_COEFF_01]->data[idx_dc] = -Xz;
            solver->diff_coeffs[MG2D_DIFF_COEFF_00]->data[idx_dc] = -k2;
            solver->rhs[idx_rhs]                            = k2;

            if (on_axis) {
                solver->diff_coeffs[MG2D_DIFF_COEFF_20]->boundaries[MG2D_BOUNDARY_0L].val[idx_z] = SQR(phi) * gtu[1][1];
                solver->diff_coeffs[MG2D_DIFF_COEFF_10]->boundaries[MG2D_BOUNDARY_0L].val[idx_z] = SQR(phi) * gtu[1][1];
            }
        }
}

static void solution_to_grid(CoordPatch *cp, MG2DContext *solver, double *dst)
{
#pragma omp parallel for
    for (int j = 0; j < solver->local_size[1]; j++)
        for (int i = 0; i < solver->local_size[0]; i++) {
            const ptrdiff_t idx_dst = CPINDEX(cp, i + cp->offset_left[0], cp->y_idx, j + cp->offset_left[1]);
            const int idx_src = j * solver->u_stride + i;
            dst[idx_dst] = 1.0 + solver->u[idx_src];
        }

    if (cp->level == 0) {
        /* on the coarsest level, extrapolate the outer boundary ghost points */
        if (!cp->bnd_intercomp[0][1]) {
#pragma omp parallel for
            for (int idx_z = cp->offset_left[1]; idx_z < cp->offset_left[1] + solver->local_size[1]; idx_z++)
                for (int idx_x = cp->offset_left[0] + solver->local_size[0]; idx_x < cp->grid_size[0]; idx_x++) {
                    const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                    dst[idx_dst] = 2.0 * dst[idx_dst - 1] - dst[idx_dst - 2];
                }
        }

        if (!cp->bnd_intercomp[1][1]) {
#pragma omp parallel for
            for (int idx_x = cp->offset_left[0]; idx_x < cp->grid_size[0]; idx_x++)
                for (int idx_z = cp->offset_left[1] + solver->local_size[1]; idx_z < cp->grid_size[2]; idx_z++) {
                    const ptrdiff_t idx_dst  = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                    const ptrdiff_t idx_src0 = CPINDEX(cp, idx_x, cp->y_idx, idx_z - 1);
                    const ptrdiff_t idx_src1 = CPINDEX(cp, idx_x, cp->y_idx, idx_z - 2);
                    dst[idx_dst] = 2.0 * dst[idx_src0] - dst[idx_src1];
                }
        }
    }

    /* fill in the axial symmetry ghostpoints by mirroring */
    if (!cp->bnd_intercomp[0][0]) {
#pragma omp parallel for
        for (int idx_z = cp->offset_left[1]; idx_z < cp->grid_size[2]; idx_z++)
            for (int idx_x = 0; idx_x < cp->offset_left[0]; idx_x++) {
                const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                const ptrdiff_t idx_src = CPINDEX(cp, 2 * cp->offset_left[0] - idx_x, cp->y_idx, idx_z);
                dst[idx_dst] = dst[idx_src];
            }
    }
    if (!cp->bnd_intercomp[1][0]) {
#pragma omp parallel for
        for (int idx_z = 0; idx_z < cp->offset_left[1]; idx_z++)
            for (int idx_x = 0; idx_x < cp->grid_size[0]; idx_x++) {
                const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                const ptrdiff_t idx_src = CPINDEX(cp, idx_x, cp->y_idx, 2 * cp->offset_left[1] - idx_z);
                dst[idx_dst] = dst[idx_src];
            }
    }
}

void msa_mg_eval(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    int64_t total_start;

    int ret;

    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];
    const double t = cctkGH->cctk_time;
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    double time_interp_step, fact0, fact1;

    total_start = gettime();

    LOGDEBUG( "evaluating lapse at rl=%d, t=%g\n", reflevel, t);

    time_interp_step = lapse_prev1_time[reflevel] - lapse_prev0_time[reflevel];

    if (lapse_prev0_time[reflevel] == DBL_MAX &&
        lapse_prev1_time[reflevel] == DBL_MAX) {
        fact0 = 0.0;
        fact1 = 0.0;
    } else if (lapse_prev0_time[reflevel] == DBL_MAX) {
        fact0 = 0.0;
        fact1 = 1.0;
    } else {
        fact0 = (lapse_prev1_time[reflevel] - t) / time_interp_step;
        fact1 = (t - lapse_prev0_time[reflevel]) / time_interp_step;
    }

    if (!fine_solve || reflevel < ms->nb_levels - 1) {
        /* on coarse levels use extrapolated past solutions */
        int64_t extrap_start = gettime();

        LOGDEBUG( "extrapolating from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

#pragma omp parallel for
        for (size_t i = 0; i < grid_size; i++)
            lapse_mg_eval[i] = fact0 * lapse_prev0[i] + fact1 * lapse_prev1[i];

        ms->time_extrapolate += gettime() - extrap_start;
        ms->count_extrapolate++;
    } else {
        /* on the finest level, use the extrapolation only for the boundary
         * values and solve for the interior */
        int64_t fine_solve_start = gettime();
        int64_t start;
        CoordPatch *cp = get_coord_patch(ms, reflevel);
        const int timestep = lrint(t * cctkGH->cctk_levfac[0] / ms->base_dt);
        int mol_substeps = MoLNumIntegratorSubsteps();
        int *mol_step = CCTK_VarDataPtr(cctkGH, 0, "MoL::MoL_Intermediate_Step");
        int solver_idx;

        MG2DContext *solver;

        if (!mol_step || *mol_step <= 0)
            CCTK_WARN(0, "Invalid MoL step");

        solver_idx = (cp->cur_step & 1) * mol_substeps + (mol_substeps - *mol_step);
        solver = cp->solver_eval[solver_idx];
        if (!solver)
            goto finish;

        start = gettime();
        fill_eq_coeffs(ms, cp, solver);
        ms->time_fine_fill_coeffs += gettime() - start;

        {
            start = gettime();

            if (solver_idx) {
                MG2DContext *solver_src = cp->solver_eval[solver_idx - 1];

#pragma omp parallel for
                for (int line = 0; line < solver->local_size[1] ; line++) {
                    memcpy(solver->u + line * solver->u_stride, solver_src->u + line * solver_src->u_stride,
                           sizeof(*solver->u) * solver->local_size[0]);
                }
            } else {
#pragma omp parallel for
                for (int line = 0; line < solver->local_size[1]; line++)
                    for (int i = 0; i < solver->local_size[0]; i++)
                        solver->u[line * solver->u_stride + i] = lapse_mg[(cp->offset_left[1] + line) * cctk_lsh[0] + cp->offset_left[0] + i] - 1.0;
            }

            ms->time_init_guess_eval += gettime() - start;
        }

        LOGDEBUG( "extrapolating BCs from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

        start = gettime();

        if (solver->local_start[1] + solver->local_size[1] == solver->domain_size) {
#pragma omp parallel for
            for (ptrdiff_t idx_z = cp->offset_left[1] + solver->local_size[1] - 1; idx_z < cctkGH->cctk_lsh[2]; idx_z++)
                for (ptrdiff_t idx_x = 0; idx_x < cctkGH->cctk_lsh[0]; idx_x++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, idx_x, cp->y_idx, idx_z);
                    lapse_mg_eval[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
                }
        }
        if (solver->local_start[0] + solver->local_size[0] == solver->domain_size) {
#pragma omp parallel for
            for (ptrdiff_t idx_z = 0; idx_z < cctkGH->cctk_lsh[2]; idx_z++)
                for (ptrdiff_t idx_x = cp->offset_left[0] + solver->local_size[0] - 1; idx_x < cctkGH->cctk_lsh[0]; idx_x++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, idx_x, cp->y_idx, idx_z);
                    lapse_mg_eval[idx] = fact0 * lapse_prev0[idx] + fact1 * lapse_prev1[idx];
                }
        }

        if (solver->local_start[1] + solver->local_size[1] == solver->domain_size) {
#pragma omp parallel for
            for (int j = 0; j < solver->fd_stencil; j++) {
                MG2DBoundary *bnd = solver->boundaries[MG2D_BOUNDARY_1U];
                double *dst = bnd->val + j * bnd->val_stride;
                for (ptrdiff_t i = -j; i < (ptrdiff_t)solver->local_size[0] + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, i + cp->offset_left[0], cp->y_idx, cp->offset_left[1] + solver->local_size[1] - 1 + j);
                    dst[i] = lapse_mg_eval[idx] - 1.0;
                }
                if (j == 0) {
                    dst = solver->u + solver->u_stride * (solver->local_size[1] - 1);
                    memcpy(dst, bnd->val, sizeof(*dst) * solver->local_size[0]);
                }
            }
        }
        if (solver->local_start[0] + solver->local_size[0] == solver->domain_size) {
#pragma omp parallel for
            for (int j = 0; j < solver->fd_stencil; j++) {
                MG2DBoundary *bnd = solver->boundaries[MG2D_BOUNDARY_0U];
                double *dst = bnd->val + j * bnd->val_stride;
                for (ptrdiff_t i = -j; i < (ptrdiff_t)solver->local_size[1] + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, cp->offset_left[0] + solver->local_size[0] - 1 + j, cp->y_idx, cp->offset_left[1] + i);
                    dst[i] = lapse_mg_eval[idx] - 1.0;
                }
                if (j == 0) {
                    dst = solver->u + solver->local_size[0] - 1;
                    for (ptrdiff_t i = 0; i < solver->local_size[1]; i++)
                        dst[i * solver->u_stride] = bnd->val[i];
                }
            }
        }
        ms->time_fine_boundaries += gettime() - start;

        LOGDEBUG( "mg solve\n");

        start = gettime();
        ret = mg2d_solve(solver);
        if (ret < 0)
            CCTK_WARN(0, "Error solving the maximal slicing equation");
        ms->time_fine_mg2d += gettime() - start;

        start = gettime();
        solution_to_grid(cp, solver, lapse_mg_eval);
        ms->time_fine_export = gettime() - start;

        if (cp->nb_components && solver_idx == 0) {
            start = gettime();

            MPI_Alltoallw(lapse_mg_eval, cp->sendcounts, cp->senddispl, cp->sendtypes,
                          lapse_mg_eval, cp->recvcounts, cp->recvdispl, cp->recvtypes,
                          MPI_COMM_WORLD);

            ms->time_mpi_sync = gettime() - start;
        }

        ms->time_fine_solve += gettime() - fine_solve_start;
        ms->count_fine_solve++;
    }
    memcpy(alpha, lapse_mg_eval, sizeof(*alpha) * grid_size);

finish:
    ms->time_eval += gettime() - total_start;
    ms->count_eval++;
}

typedef struct Rect {
    ptrdiff_t start[2];
    size_t    size[2];
} Rect;

static int rect_intersect(Rect *dst, const Rect *src1, const Rect *src2)
{
    ptrdiff_t intersect_start0 = MAX(src1->start[0], src2->start[0]);
    ptrdiff_t intersect_start1 = MAX(src1->start[1], src2->start[1]);
    ptrdiff_t intersect_end0   = MIN(src1->start[0] + src1->size[0], src2->start[0] + src2->size[0]);
    ptrdiff_t intersect_end1   = MIN(src1->start[1] + src1->size[1], src2->start[1] + src2->size[1]);

    if (intersect_start0 < intersect_end0 && intersect_start1 < intersect_end1) {
        dst->start[0] = intersect_start0;
        dst->start[1] = intersect_start1;
        dst->size[0]  = intersect_end0 - intersect_start0;
        dst->size[1]  = intersect_end1 - intersect_start1;

        return 1;
    }

    dst->size[0] = 0;
    dst->size[1] = 0;

    return 0;
}

static int guess_from_coarser(MSMGContext *ms, CoordPatch *cp, CoordPatch *cp_coarse)
{
    int ret;

    if (cp->nb_components > 1) {
        int comp_fine, comp_coarse = 0;

        // FIXME skip levels with skipped components,
        // those require somewhat more complex logic to implement
        MPI_Comm_size(cp->solver_comm, &comp_fine);
        if (cp_coarse->solver_comm != MPI_COMM_NULL)
            MPI_Comm_size(cp_coarse->solver_comm, &comp_coarse);
        if (comp_fine != cp->nb_components || comp_coarse != cp->nb_components)
            return 0;

        if (!cp->u_guess) {
            const int ghosts = cp->solver->fd_stencil + 1;
            int local_proc = CCTK_MyProc(ms->gh);

            cp->u_guess_sendcounts = calloc(cp->nb_components, sizeof(*cp->u_guess_sendcounts));
            cp->u_guess_senddispl  = calloc(cp->nb_components, sizeof(*cp->u_guess_senddispl));
            cp->u_guess_sendtypes  = calloc(cp->nb_components, sizeof(*cp->u_guess_sendtypes));
            cp->u_guess_recvcounts = calloc(cp->nb_components, sizeof(*cp->u_guess_recvcounts));
            cp->u_guess_recvdispl  = calloc(cp->nb_components, sizeof(*cp->u_guess_recvdispl));
            cp->u_guess_recvtypes  = calloc(cp->nb_components, sizeof(*cp->u_guess_recvtypes));
            if (!cp->u_guess_sendcounts || !cp->u_guess_senddispl || !cp->u_guess_sendtypes ||
                !cp->u_guess_recvcounts || !cp->u_guess_recvdispl || !cp->u_guess_recvtypes)
                return -ENOMEM;

            cp->u_guess_size[0] = cp->solver_size[local_proc][0] / 2 + 2 * ghosts;
            cp->u_guess_size[1] = cp->solver_size[local_proc][1] / 2 + 2 * ghosts;
            cp->u_guess_start[0] = cp->solver_start[local_proc][0] / 2 - ghosts;
            cp->u_guess_start[1] = cp->solver_start[local_proc][1] / 2 - ghosts;
            cp->u_guess_stride  = cp->u_guess_size[0];
            cp->u_guess= calloc(cp->u_guess_stride * cp->u_guess_size[1],
                                sizeof(*cp->u_guess));
            if (!cp->u_guess)
                return -ENOMEM;

            for (int comp_fine = 0; comp_fine < cp->nb_components; comp_fine++) {
                Rect dst_fine = {
                    .start = { cp->solver_start[comp_fine][0], cp->solver_start[comp_fine][1]},
                    .size  = { cp->solver_size[comp_fine][0],  cp->solver_size[comp_fine][1]},
                };
                Rect dst_coarse = {
                    .start = { dst_fine.start[0] / 2 - ghosts,     dst_fine.start[1] / 2 - ghosts },
                    .size  = { dst_fine.size[0]  / 2 + ghosts * 2, dst_fine.size[1] / 2 + ghosts * 2 },
                };

                for (int comp_coarse = 0; comp_coarse < cp->nb_components; comp_coarse++) {
                    Rect overlap;
                    Rect src = {
                        .start = { cp_coarse->solver_start[comp_coarse][0], cp_coarse->solver_start[comp_coarse][1]},
                        .size  = { cp_coarse->solver_size[comp_coarse][0],  cp_coarse->solver_size[comp_coarse][1]},
                    };
                    for (int dim = 0; dim < 2; dim++) {
                        if (src.start[dim] == 0) {
                            src.start[dim] -= ghosts;
                            src.size[dim]  += ghosts;
                        }
                    }

                    rect_intersect(&overlap, &dst_coarse, &src);
                    if (comp_fine == local_proc) {
                        if (overlap.size[0] > 0 && overlap.size[1] > 0) {
                            cp->u_guess_recvcounts[comp_coarse] = 1;
                            cp->u_guess_recvdispl[comp_coarse]  = ((overlap.start[1] - dst_coarse.start[1]) * cp->u_guess_stride +
                                                                   (overlap.start[0] - dst_coarse.start[0])) * sizeof(double);
                            MPI_Type_vector(overlap.size[1], overlap.size[0], cp->u_guess_stride,
                                            MPI_DOUBLE, &cp->u_guess_recvtypes[comp_coarse]);
                            MPI_Type_commit(&cp->u_guess_recvtypes[comp_coarse]);
                        } else {
                            cp->u_guess_recvcounts[comp_coarse] = 0;
                            cp->u_guess_recvdispl[comp_coarse]  = 0;
                            MPI_Type_dup(MPI_BYTE, &cp->u_guess_recvtypes[comp_coarse]);
                        }
                    }
                    if (comp_coarse == local_proc) {
                        if (overlap.size[0] > 0 && overlap.size[1] > 0) {
                            ptrdiff_t src_origin[2] = { cp_coarse->solver_start[comp_coarse][0], cp_coarse->solver_start[comp_coarse][1]};
                            cp->u_guess_sendcounts[comp_fine] = 1;
                            cp->u_guess_senddispl[comp_fine]  = ((overlap.start[1] - src_origin[1]) * cp_coarse->solver->u_stride +
                                                                 (overlap.start[0] - src_origin[0])) * sizeof(double);
                            MPI_Type_vector(overlap.size[1], overlap.size[0], cp_coarse->solver->u_stride,
                                            MPI_DOUBLE, &cp->u_guess_sendtypes[comp_fine]);
                            MPI_Type_commit(&cp->u_guess_sendtypes[comp_fine]);
                        } else {
                            cp->u_guess_sendcounts[comp_fine] = 0;
                            cp->u_guess_senddispl[comp_fine]  = 0;
                            MPI_Type_dup(MPI_BYTE, &cp->u_guess_sendtypes[comp_fine]);
                        }
                    }
                }
            }
        }

        MPI_Alltoallw(cp_coarse->solver->u, cp->u_guess_sendcounts, cp->u_guess_senddispl, cp->u_guess_sendtypes,
                      cp->u_guess,     cp->u_guess_recvcounts, cp->u_guess_recvdispl, cp->u_guess_recvtypes,
                      MPI_COMM_WORLD);
        ret = mg2d_init_guess(cp->solver,
                              cp->u_guess, cp->u_guess_stride,
                              cp->u_guess_start, cp->u_guess_size, cp_coarse->solver->step);
    } else {
        ret = mg2d_init_guess(cp->solver, cp_coarse->solver->u, cp_coarse->solver->u_stride,
                              cp_coarse->solver->local_start, cp_coarse->solver->local_size, cp_coarse->solver->step);
    }

    return ret;
}

void msa_mg_solve(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    int64_t total_start, mg_start, start;

    int reflevel_top, ts_tmp;
    int ret;

    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];
    const double t = cctkGH->cctk_time;
    const int timestep = lrint(t * cctkGH->cctk_levfac[0] / cctkGH->cctk_delta_time);
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    double *lapse_mg1;

    if (reflevel == ms->nb_levels - 1 && timestep % 2)
        return;

    total_start = gettime();

    LOGDEBUG( "solve lapse at rl=%d, t=%g; step %d\n", reflevel, t, timestep);

    reflevel_top = reflevel;
    ts_tmp = timestep;
    while (reflevel_top > 0 && !(ts_tmp % 2)) {
        ts_tmp /= 2;
        reflevel_top--;
    }

    mg_start = gettime();
    LOGDEBUG( "mg solve cur %d top %d\n", reflevel, reflevel_top);

    /* fill in the equation coefficients */
    cp = get_coord_patch(ms, reflevel);

    // this happens when this component contains only the buffer points,
    // so we skip the solve and only fill in the extrapolation values
    if (!cp->solver)
        goto skip_solve;

    start = gettime();
    fill_eq_coeffs(ms, cp, cp->solver);
    ms->time_solve_fill_coeffs += gettime() - start;

    start = gettime();
    if (reflevel > 0) {
        if (timestep % 2) {
            /* outer-most level for this solve, use extrapolated lapse as the
             * boundary condition and initial guess */
            double time_interp_step = lapse_prev1_time[reflevel] - lapse_prev0_time[reflevel];
            double fact0, fact1;

            if (lapse_prev0_time[reflevel] == DBL_MAX &&
                lapse_prev1_time[reflevel] == DBL_MAX) {
                fact0 = 0.0;
                fact1 = 0.0;
            } else if (lapse_prev0_time[reflevel] == DBL_MAX) {
                fact0 = 0.0;
                fact1 = 1.0;
            } else {
                fact0 = (lapse_prev1_time[reflevel] - t) / time_interp_step;
                fact1 = (t - lapse_prev0_time[reflevel]) / time_interp_step;
            }

            LOGDEBUG( "extrapolating BCs from t1=%g (%g) and t0=%g (%g)\n", lapse_prev1_time[reflevel], fact1, lapse_prev0_time[reflevel], fact0);

#pragma omp parallel for
        for (size_t i = 0; i < grid_size; i++)
            lapse_mg[i] = fact0 * lapse_prev0[i] + fact1 * lapse_prev1[i];

#pragma omp parallel for
        for (int j = 0; j < cp->solver->local_size[1]; j++)
            for (int i = 0; i < cp->solver->local_size[0]; i++) {
                const ptrdiff_t idx_src = CPINDEX(cp, i + cp->offset_left[0], cp->y_idx, j + cp->offset_left[1]);
                const int idx_dst = j * cp->solver->u_stride + i;
                cp->solver->u[idx_dst] = lapse_mg[idx_src] - 1.0;
            }

        } else {
            /* use the solution from the coarser level as the initial guess */
            CoordPatch *cp1 = get_coord_patch(ms, reflevel - 1);

            ret = guess_from_coarser(ms, cp, cp1);
            if (ret < 0)
                CCTK_WARN(0, "Error setting the initial guess");
        }

        /* if the condition above was false, then lapse_mg should be filled by
         * prolongation from the coarser level
         * note that the reflection-boundary ghost points are not filled
         */

        /* fill the solver boundary conditions */
        if (cp->solver->local_start[1] + cp->solver->local_size[1] == cp->solver->domain_size) {
#pragma omp parallel for
            for (int j = 0; j < cp->solver->fd_stencil; j++) {
                MG2DBoundary *bnd = cp->solver->boundaries[MG2D_BOUNDARY_1U];
                double *dst = bnd->val + j * bnd->val_stride;
                for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->local_size[0] + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, ABS(i) + cp->offset_left[0], cp->y_idx, cp->offset_left[1] + cp->solver->local_size[1] - 1 + j);
                    dst[i] = lapse_mg[idx] - 1.0;
                }
            }
        }
        if (cp->solver->local_start[0] + cp->solver->local_size[0] == cp->solver->domain_size) {
#pragma omp parallel for
            for (int j = 0; j < cp->solver->fd_stencil; j++) {
                MG2DBoundary *bnd = cp->solver->boundaries[MG2D_BOUNDARY_0U];
                double *dst = bnd->val + j * bnd->val_stride;
                for (ptrdiff_t i = -j; i < (ptrdiff_t)cp->solver->local_size[1] + j; i++) {
                    const ptrdiff_t idx = CCTK_GFINDEX3D(cctkGH, cp->offset_left[1] + cp->solver->local_size[0] - 1 + j, cp->y_idx, cp->offset_left[1] + ABS(i));
                    dst[i] = lapse_mg[idx] - 1.0;
                }
            }
        }
    }
    ms->time_solve_boundaries += gettime() - start;

    /* do the elliptic solve */
    start = gettime();
    ret = mg2d_solve(cp->solver);
    if (ret < 0)
        CCTK_WARN(0, "Error solving the maximal slicing equation");
    ms->time_solve_mg2d += gettime() - start;

    /* export the result */
    start = gettime();
    solution_to_grid(cp, cp->solver, lapse_mg);

    lapse_mg1 = CCTK_VarDataPtr(cctkGH, 1, "MaximalSlicingAxiMG::lapse_mg");
    memcpy(lapse_mg1, lapse_mg, grid_size * sizeof(*lapse_mg1));
    ms->time_solve_export += gettime() - start;

skip_solve:
    /* update lapse history for extrapolation */
    if (reflevel == 0 || !(timestep % 2)) {
        const double vel_fact = 1.0 / (1 << (reflevel - reflevel_top));

        start = gettime();
#pragma omp parallel for
        for (size_t j = 0; j < grid_size; j++) {
            const double sol_new = lapse_mg[j];
            const double delta = sol_new - lapse_mg_eval[j];
            lapse_prev0[j] = lapse_prev1[j] + delta - delta * vel_fact;
            lapse_prev1[j] = sol_new;
            alpha[j]       = sol_new;
        }
        lapse_prev0_time[reflevel] = lapse_prev1_time[reflevel];
        lapse_prev1_time[reflevel] = cctkGH->cctk_time;

        ms->time_solve_history += gettime() - start;
    }

    ms->time_solve_mg += gettime() - mg_start;
    ms->count_solve_mg++;

finish:
    ms->time_solve += gettime() - total_start;
    ms->count_solve++;

    if (stats_every > 0 && reflevel == 0 && ms->count_solve > 0 && ms->count_eval > 0 &&
        !(ms->count_solve % stats_every))
        print_stats(ms);
}

void msa_mg_sync(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    LOGDEBUG( "\nsync %g %d\n\n", cctkGH->cctk_time, reflevel);

    return;
}

void msa_mg_init(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    int ret;
    int nb_levels_type;
    int nb_levels = *(int*)CCTK_ParameterGet("num_levels_1", "CarpetRegrid2", &nb_levels_type);
    int use_tapered_grids = *(int*)CCTK_ParameterGet("use_tapered_grids", "Carpet", &use_tapered_grids);

    if (!use_tapered_grids)
        CCTK_WARN(0, "MaximalSlicingAxiMG only works with use_tapered_grids=1");

    if (!ms) {
        ret = context_init(cctkGH, fd_stencil, maxiter, exact_size, nb_cycles,
                           nb_relax_pre, nb_relax_post, tol_residual, tol_residual_base,
                           cfl_factor, nb_levels,
                           loglevel, &ms);
        if (ret < 0)
            CCTK_WARN(0, "Error initializing the solver context");
    }
}

void msa_mg_prestep(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    const double t = cctkGH->cctk_time;
    const int timestep = lrint(t * cctkGH->cctk_levfac[0] / cctkGH->cctk_delta_time);
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    cp = get_coord_patch(ms, reflevel);
    cp->cur_step = timestep;
}

void msa_mg_inithist(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    const size_t grid_size = cctkGH->cctk_lsh[2] * cctkGH->cctk_lsh[1] * cctkGH->cctk_lsh[0];

    for (size_t i = 0; i < grid_size; i++)
        lapse_mg[i] = 1.0;

    for (int i = 0; i < 32; i++) {
        lapse_prev0_time[i] = DBL_MAX;
        lapse_prev1_time[i] = DBL_MAX;
    }
}

void maximal_slicing_axi_mg_modify_diss(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    CoordPatch *cp;

    const int reflevel = ctz(cctkGH->cctk_levfac[0]);

    double *epsdis;

    epsdis = CCTK_VarDataPtr(cctkGH, 0, "Dissipation::epsdisA");
    if (!epsdis)
        abort();

    cp = get_coord_patch(ms, reflevel);

    if (!cp->bnd_intercomp[0][1]) {
        for (int idx_z = 0; idx_z < cp->grid_size[2]; idx_z++)
            for (int idx_x = cp->offset_left[0] + (cp->solver ? cp->solver->local_size[0] - (ms->fd_stencil + 1) : 0); idx_x < cp->grid_size[0]; idx_x++) {
                const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                epsdis[idx_dst] = 0.0;
            }
    }

    if (!cp->bnd_intercomp[1][1]) {
        for (int idx_x = 0; idx_x < cp->grid_size[0]; idx_x++)
            for (int idx_z = cp->offset_left[0] + (cp->solver ? cp->solver->local_size[1] - (ms->fd_stencil + 1) : 0); idx_z < cp->grid_size[2]; idx_z++) {
                const ptrdiff_t idx_dst = CPINDEX(cp, idx_x, cp->y_idx, idx_z);
                epsdis[idx_dst] = 0.0;
            }
    }
}

void msa_mg_terminate_print_stats(CCTK_ARGUMENTS)
{
    const int reflevel = ctz(cctkGH->cctk_levfac[0]);
    if (reflevel == 0 && ms) {
        print_stats(ms);
        context_free(&ms);
    }
}