summaryrefslogtreecommitdiff
path: root/src/solve.c
blob: 610dc0d647fd42dbf11b9f2a05a74c8fc57c8258 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cblas.h>
#include <lapacke.h>

#include <cl.h>
#include <clBLAS.h>

#include "maximal_slicing_axi.h"

static int construct_matrix(MaximalSlicingContext *ms, double *mat,
                            double *rhs, double *prhs_max)
{
    int idx_coeff_x, idx_coeff_z, idx_grid_x, idx_grid_z;
    double rhs_max = 0.0;

#define   BASIS_X (ms->basis_x_val  [idx_grid_x * ms->nb_coeffs_x + idx_coeff_x])
#define  DBASIS_X (ms->basis_x_dval [idx_grid_x * ms->nb_coeffs_x + idx_coeff_x])
#define D2BASIS_X (ms->basis_x_d2val[idx_grid_x * ms->nb_coeffs_x + idx_coeff_x])
#define   BASIS_Z (ms->basis_z_val  [idx_grid_z * ms->nb_coeffs_z + idx_coeff_z])
#define  DBASIS_Z (ms->basis_z_dval [idx_grid_z * ms->nb_coeffs_z + idx_coeff_z])
#define D2BASIS_Z (ms->basis_z_d2val[idx_grid_z * ms->nb_coeffs_z + idx_coeff_z])

    //memset(mat, 0, sizeof(*mat) * ms->nb_coeffs * ms->nb_colloc_points);

#pragma omp parallel for reduction(max : rhs_max)
    for (idx_grid_z = 0; idx_grid_z < ms->nb_colloc_points_z; idx_grid_z++) {
        for (idx_grid_x = 0; idx_grid_x < ms->nb_colloc_points_x; idx_grid_x++) {
            CCTK_REAL x_physical = ms->grid_x[idx_grid_x];
            int idx_grid         = idx_grid_z * ms->nb_colloc_points_x + idx_grid_x;

            const double gtuxx         = ms->metric_u[0][idx_grid];
            const double gtuyy         = ms->metric_u[1][idx_grid];
            const double gtuzz         = ms->metric_u[2][idx_grid];
            const double gtuxz         = ms->metric_u[4][idx_grid];

            const double phi           = ms->interp_values[I_PHI][idx_grid];
            const double phi_dx        = ms->interp_values[I_PHI_DX][idx_grid];
            const double phi_dz        = ms->interp_values[I_PHI_DZ][idx_grid];

            const double Xtx           = ms->interp_values[I_XTX][idx_grid];
            const double Xtz           = ms->interp_values[I_XTZ][idx_grid];

            const double k2            = ms->kij_kij[idx_grid];
            const double trk           = ms->interp_values[I_K][idx_grid];

            const double trk_dx        = ms->interp_values[I_K_DX][idx_grid];
            const double trk_dz        = ms->interp_values[I_K_DZ][idx_grid];

            const double betax         = ms->interp_values[I_BETAX][idx_grid];
            const double betaz         = ms->interp_values[I_BETAZ][idx_grid];

            const double Xx = SQR(phi) * (Xtx + (phi_dx * gtuxx + phi_dz * gtuxz) / phi);
            const double Xz = SQR(phi) * (Xtz + (phi_dx * gtuxz + phi_dz * gtuzz) / phi);

            const double coeff_20 = SQR(phi) * (gtuxx + (x_physical <= EPS) * gtuyy);
            const double coeff_02 = SQR(phi) * gtuzz;
            const double coeff_11 = SQR(phi) * gtuxz * 2;
            const double coeff_10 = -Xx + (x_physical > EPS) * SQR(phi) * gtuyy / x_physical;
            const double coeff_01 = -Xz;
            const double coeff_00 = -k2;

#if 1
            for (idx_coeff_z = 0; idx_coeff_z < ms->nb_coeffs_z; idx_coeff_z++)
                for (idx_coeff_x = 0; idx_coeff_x < ms->nb_coeffs_x; idx_coeff_x++) {
                    const int idx_coeff = idx_coeff_z * ms->nb_coeffs_x + idx_coeff_x;

                    //double d2alpha =     gtuxx * D2BASIS_X *   BASIS_Z
                    //               +     gtuzz *   BASIS_X * D2BASIS_Z
                    //               + 2 * gtuxz *  DBASIS_X *  DBASIS_Z;
                    //if (x_physical > EPS)
                    //    d2alpha += gtuyy *  DBASIS_X *   BASIS_Z / x_physical;
                    //else
                    //    d2alpha += gtuyy * D2BASIS_X * BASIS_Z;

                    //double curv_term = Xx * DBASIS_X * BASIS_Z + Xz * BASIS_X * DBASIS_Z;


                    //double D2alpha = SQR(phi) * d2alpha - curv_term;

                    //mat[idx_grid + ms->nb_colloc_points * idx_coeff] = D2alpha - BASIS_X * BASIS_Z * k2;
                    mat[idx_grid + ms->nb_colloc_points * idx_coeff] = coeff_00 *   BASIS_X *   BASIS_Z +
                                                                       coeff_10 *  DBASIS_X *   BASIS_Z +
                                                                       coeff_01 *   BASIS_X *  DBASIS_Z +
                                                                       coeff_11 *  DBASIS_X *  DBASIS_Z +
                                                                       coeff_20 * D2BASIS_X *   BASIS_Z +
                                                                       coeff_02 *   BASIS_X * D2BASIS_Z;
                }
#else

            const double coeff_20 = SQR(phi) * (gtuxx + (x_physical <= EPS) * gtuyy);
            const double coeff_02 = SQR(phi) * gtuzz;
            const double coeff_11 = SQR(phi) * gtuxz * 2;
            const double coeff_10 = SQR(phi) * (Xtx + (phi_dx * gtuxx + phi_dz * gtuxz) / phi + (x_physical > EPS) * gtuyy);
            const double coeff_01 = SQR(phi) * (Xtz + (phi_dx * gtuxz + phi_dz * gtuzz) / phi);
            const double coeff_00 = -k2;
            cblas_daxpy(ms->nb_coeffs, coeff_20, ms->basis_val_20 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
            cblas_daxpy(ms->nb_coeffs, coeff_02, ms->basis_val_02 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
            cblas_daxpy(ms->nb_coeffs, coeff_11, ms->basis_val_11 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
            cblas_daxpy(ms->nb_coeffs, coeff_10, ms->basis_val_10 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
            cblas_daxpy(ms->nb_coeffs, coeff_01, ms->basis_val_01 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
            cblas_daxpy(ms->nb_coeffs, coeff_00, ms->basis_val_00 + idx_grid, ms->nb_colloc_points, mat + idx_grid, ms->nb_colloc_points);
#endif

            rhs[idx_grid] = k2 + trk ;// betax * trk_dx + betaz * trk_dz;
            //rhs[idx_grid] = k2;
            rhs_max = MAX(rhs_max, fabs(rhs[idx_grid]));
            //rhs_max = fabs(rhs[idx_grid]);
        }
    }

    //memcpy(rhs, ms->kij_kij, sizeof(*rhs) * ms->nb_colloc_points);
    //cblas_daxpy(ms->nb_colloc_points, 1.0, ms->interp_values[I_K], 1, rhs, 1);
    //cblas_dsbmv(CblasColMajor, CblasUpper, ms->nb_colloc_points, 0, 1.0, ms->interp_values[I_BETAX], 1, ms->interp_values[I_K_DX], 1, 1.0, rhs, 1);
    //cblas_dsbmv(CblasColMajor, CblasUpper, ms->nb_colloc_points, 0, 1.0, ms->interp_values[I_BETAZ], 1, ms->interp_values[I_K_DZ], 1, 1.0, rhs, 1);

    //*prhs_max = rhs[cblas_idamax(ms->nb_colloc_points, rhs, 1)];
    *prhs_max = rhs_max;

    return 0;
}


static int calc_geometry(MaximalSlicingContext *ms)
{
    int ret;

    ret = CCTK_InterpGridArrays(ms->gh, 3, ms->interp_operator, ms->interp_params,
                                ms->coord_system, ms->nb_colloc_points, CCTK_VARIABLE_REAL,
                                (const void * const *)ms->interp_coords, ARRAY_ELEMS(ms->interp_vars_indices), ms->interp_vars_indices,
                                ARRAY_ELEMS(ms->interp_values), ms->interp_value_codes, (void * const *)ms->interp_values);
    if (ret < 0)
        CCTK_WARN(0, "Error interpolating");

#pragma omp parallel for schedule(dynamic, ms->nb_colloc_points_x)
    for (int i = 0; i < ms->nb_colloc_points; i++) {
        CCTK_REAL Am[3][3], gtu[3][3];
        CCTK_REAL a2;

        CCTK_REAL gtxx = ms->interp_values[I_GTXX][i];
        CCTK_REAL gtyy = ms->interp_values[I_GTYY][i];
        CCTK_REAL gtzz = ms->interp_values[I_GTZZ][i];
        CCTK_REAL gtxy = ms->interp_values[I_GTXY][i];
        CCTK_REAL gtxz = ms->interp_values[I_GTXZ][i];
        CCTK_REAL gtyz = ms->interp_values[I_GTYZ][i];

        CCTK_REAL Atxx = ms->interp_values[I_ATXX][i];
        CCTK_REAL Atyy = ms->interp_values[I_ATYY][i];
        CCTK_REAL Atzz = ms->interp_values[I_ATZZ][i];
        CCTK_REAL Atxy = ms->interp_values[I_ATXY][i];
        CCTK_REAL Atxz = ms->interp_values[I_ATXZ][i];
        CCTK_REAL Atyz = ms->interp_values[I_ATYZ][i];

        CCTK_REAL At[3][3] = {{ Atxx, Atxy, Atxz },
                              { Atxy, Atyy, Atyz },
                              { Atxz, Atyz, Atzz }};

        CCTK_REAL trK  = ms->interp_values[I_K][i];

        CCTK_REAL Xtx  = ms->interp_values[I_XTX][i];
        CCTK_REAL Xtz  = ms->interp_values[I_XTZ][i];

        CCTK_REAL det = gtxx * gtyy * gtzz + 2 * gtxy * gtyz * gtxz - gtzz * SQR(gtxy) - SQR(gtxz) * gtyy - gtxx * SQR(gtyz);

        // \tilde{γ}^{ij}
        gtu[0][0] =  (gtyy * gtzz - SQR(gtyz)) / det;
        gtu[1][1] =  (gtxx * gtzz - SQR(gtxz)) / det;
        gtu[2][2] =  (gtxx * gtyy - SQR(gtxy)) / det;
        gtu[0][1] = -(gtxy * gtzz - gtyz * gtxz) / det;
        gtu[0][2] =  (gtxy * gtyz - gtyy * gtxz) / det;
        gtu[1][2] = -(gtxx * gtyz - gtxy * gtxz) / det;
        gtu[1][0] = gtu[0][1];
        gtu[2][0] = gtu[0][2];
        gtu[2][1] = gtu[1][2];

        // \tilde{A}_{i}^j
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++) {
                double val = 0.0;
                for (int l = 0; l < 3; l++)
                    val += gtu[j][l] * At[l][k];
                Am[j][k] = val;
            }

        // K_{ij} K^{ij}
        a2 = 0.0;
        for (int j = 0; j < 3; j++)
            for (int k = 0; k < 3; k++)
                a2 += Am[j][k] * Am[k][j];

        ms->metric_u[0][i] = gtu[0][0];
        ms->metric_u[1][i] = gtu[1][1];
        ms->metric_u[2][i] = gtu[2][2];
        ms->metric_u[3][i] = gtu[0][1];
        ms->metric_u[4][i] = gtu[0][2];
        ms->metric_u[5][i] = gtu[1][2];

        ms->kij_kij[i] = a2 + SQR(trK) / 3.;
    }

    return 0;
}

// based on the wikipedia article
// and http://www.netlib.org/templates/matlab/bicgstab.m
static int solve_bicgstab(BiCGSTABContext *ctx, const int N,
                          double *mat, double *rhs, double *x)
{
    const double rhs_norm = cblas_dnrm2(N, rhs, 1);

    double rho, rho_prev = 1.0;
    double omega = 1.0;
    double alpha = 1.0;

    double err;
    int i;

    double *k = ctx->k;
    double *p = ctx->p, *v = ctx->v, *y = ctx->y, *z = ctx->z, *t = ctx->t;
    double *res = ctx->res, *res0 = ctx->res0;

    // initialize the residual
    memcpy(res, rhs, N * sizeof(*res));
    cblas_dgemv(CblasColMajor, CblasNoTrans, N, N, -1.0,
                mat, N, x, 1, 1.0, res, 1);

    memcpy(res0, res, N * sizeof(*res0));
    memcpy(p,    res, N * sizeof(*p));

#define MAXITER 16
#define TOL (1e-15)
    for (i = 0; i < MAXITER; i++) {
        rho = cblas_ddot(N, res, 1, res0, 1);

        if (i) {
            double beta = (rho / rho_prev) * (alpha / omega);

            cblas_daxpy(N, -omega, v, 1, p, 1);
            cblas_dscal(N, beta, p, 1);
            cblas_daxpy(N, 1, res, 1, p, 1);
        }

        cblas_dgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    k, N, p, 1, 0.0, y, 1);

        cblas_dgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    mat, N, y, 1, 0.0, v, 1);

        alpha = rho / cblas_ddot(N, res0, 1, v, 1);

        cblas_daxpy(N, -alpha, v, 1, res, 1);

        cblas_dgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    k, N, res, 1, 0.0, z, 1);
        cblas_dgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    mat, N, z, 1, 0.0, t, 1);

        omega = cblas_ddot(N, t, 1, res, 1) / cblas_ddot(N, t, 1, t, 1);

        cblas_daxpy(N, alpha, y, 1, x, 1);
        cblas_daxpy(N, omega, z, 1, x, 1);

        cblas_daxpy(N, -omega, t, 1, res, 1);

        err = cblas_dnrm2(N, res, 1) / rhs_norm;
        if (err < TOL)
            break;

        rho_prev = rho;
    }
    if (i == MAXITER)
        return -1;

    ctx->iter_total += i + 1;

    return i;
}

static int solve_bicgstab_cl(BiCGSTABContext *ctx, cl_command_queue cl_q,
                             const int N, double *mat, double *rhs, cl_mem ocl_x)
{
    const double rhs_norm = cblas_dnrm2(N, rhs, 1);

    double rho, rho_prev = 1.0;
    double omega[2] = { 1.0 };
    double alpha = 1.0;

    double err;
    int i;

    cl_event events[8];

    // upload the matrix and the RHS to the GPU
    // k and x are assumed to be already uploaded
    clEnqueueWriteBuffer(cl_q, ctx->cl_res, 0, 0, N * sizeof(double),
                         rhs, 0, NULL, &events[0]);
    clEnqueueWriteBuffer(cl_q, ctx->cl_mat, 0, 0, N * N * sizeof(double),
                         mat, 0, NULL, &events[1]);

    // initialize the residual
    clblasDgemv(CblasColMajor, CblasNoTrans, N, N, -1.0,
                ctx->cl_mat, 0, N, ocl_x, 0, 1, 1.0, ctx->cl_res, 0, 1,
                1, &cl_q, 2, events, &events[2]);
    clEnqueueCopyBuffer(cl_q, ctx->cl_res, ctx->cl_res0, 0, 0, N * sizeof(double),
                        1, &events[2], &events[3]);
    clEnqueueCopyBuffer(cl_q, ctx->cl_res, ctx->cl_p, 0, 0, N * sizeof(double),
                        1, &events[2], &events[4]);

    clWaitForEvents(5, events);
    // BARRIER

#define MAXITER 16
#define TOL (1e-15)
    for (i = 0; i < MAXITER; i++) {
        clblasDdot(N, ctx->cl_rho, 0, ctx->cl_res, 0, 1, ctx->cl_res0, 0, 1,
                   ctx->cl_tmp, 1, &cl_q, 0, NULL, &events[0]);
        clEnqueueReadBuffer(cl_q, ctx->cl_rho, 1, 0, sizeof(double), &rho,
                            1, &events[0], NULL);
        // BARRIER

        if (i) {
            double beta = (rho / rho_prev) * (alpha / omega[0]);

            clblasDaxpy(N, -omega[0], ctx->cl_v, 0, 1, ctx->cl_p, 0, 1,
                        1, &cl_q, 0, NULL, &events[0]);
            clblasDscal(N, beta, ctx->cl_p, 0, 1,
                        1, &cl_q, 1, &events[0], &events[1]);
            clblasDaxpy(N, 1, ctx->cl_res, 0, 1, ctx->cl_p, 0, 1,
                        1, &cl_q, 1, &events[1], &events[0]);
            clWaitForEvents(1, &events[0]);
            // BARRIER
        }

        clblasDgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    ctx->cl_k, 0, N, ctx->cl_p, 0, 1, 0.0, ctx->cl_y, 0, 1,
                    1, &cl_q, 0, NULL, &events[0]);

        clblasDgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    ctx->cl_mat, 0, N, ctx->cl_y, 0, 1, 0.0, ctx->cl_v, 0, 1,
                    1, &cl_q, 1, &events[0], &events[1]);

        clblasDdot(N, ctx->cl_alpha, 0, ctx->cl_res0, 0, 1, ctx->cl_v, 0, 1,
                   ctx->cl_tmp, 1, &cl_q, 1, &events[1], &events[0]);
        clEnqueueReadBuffer(cl_q, ctx->cl_alpha, 1, 0, sizeof(double), &alpha,
                            1, &events[0], NULL);
        // BARRIER

        alpha = rho / alpha;

        clblasDaxpy(N, -alpha, ctx->cl_v, 0, 1, ctx->cl_res, 0, 1,
                    1, &cl_q, 0, NULL, &events[0]);

        clblasDgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    ctx->cl_k, 0, N, ctx->cl_res, 0, 1, 0.0, ctx->cl_z, 0, 1,
                    1, &cl_q, 1, &events[0], &events[1]);
        clblasDgemv(CblasColMajor, CblasNoTrans, N, N, 1.0,
                    ctx->cl_mat, 0, N, ctx->cl_z, 0, 1, 0.0, ctx->cl_t, 0, 1,
                    1, &cl_q, 1, &events[1], &events[0]);

        clblasDdot(N, ctx->cl_omega, 0, ctx->cl_t, 0, 1, ctx->cl_res, 0, 1,
                   ctx->cl_tmp, 1, &cl_q, 1, &events[0], &events[1]);
        clblasDdot(N, ctx->cl_omega, 1, ctx->cl_t, 0, 1, ctx->cl_t, 0, 1,
                   ctx->cl_tmp1, 1, &cl_q, 1, &events[0], &events[2]);

        clEnqueueReadBuffer(cl_q, ctx->cl_omega, 1, 0, sizeof(omega), omega,
                            2, &events[1], NULL);
        // BARRIER

        omega[0] /= omega[1];

        clblasDaxpy(N, alpha, ctx->cl_y, 0, 1, ocl_x, 0, 1,
                    1, &cl_q, 0, NULL, &events[0]);
        clblasDaxpy(N, omega[0], ctx->cl_z, 0, 1, ocl_x, 0, 1,
                    1, &cl_q, 1, &events[0], &events[1]);

        clblasDaxpy(N, -omega[0], ctx->cl_t, 0, 1, ctx->cl_res, 0, 1,
                    1, &cl_q, 0, NULL, &events[0]);
        clblasDnrm2(N, ctx->cl_tmp, 0, ctx->cl_res, 0, 1, ctx->cl_tmp1,
                    1, &cl_q, 1, &events[0], &events[2]);
        clEnqueueReadBuffer(cl_q, ctx->cl_tmp, 1, 0, sizeof(double), &err,
                            1, &events[2], NULL);
        clWaitForEvents(1, &events[1]);
        // BARRIER

        if (err < TOL)
            break;

        rho_prev = rho;
    }
    if (i == MAXITER)
        return -1;

    ctx->iter_total += i + 1;

    return i;
}

static int lu_invert(const int N, double *mat, double *rhs, int *ipiv)
{
    LAPACKE_dgesv(LAPACK_COL_MAJOR, N, 1,
                  mat, N, ipiv, rhs, N);
    LAPACKE_dgetri(LAPACK_COL_MAJOR, N, mat, N, ipiv);

    return 0;
}

/*
 * Solve the equation
 * D²α - KᵢⱼKⁱʲα = -K
 * for the coefficients of spectral approximation of α:
 * α(ρ, z) = 1 + ΣaᵢⱼTᵢ(ρ)Tⱼ(z)
 * where i =  { 0, ... , ms->nb_coeffs_x };
 *       j =  { 0, ... , ms->nb_coeffs_z };
 * Tᵢ(x) are defined by ms->basis.
 */
int msa_maximal_solve(MaximalSlicingContext *ms)
{
    const int N = ms->nb_coeffs;
    double rhs_max;

    int ret = 0;

    /* interpolate the metric values and construct the quantities we'll need */
    CCTK_TimerStart("MaximalSlicingAxi_calc_geometry");
    ret = calc_geometry(ms);
    CCTK_TimerStop("MaximalSlicingAxi_calc_geometry");
    if (ret < 0)
        return ret;

    /* fill the matrix */
    CCTK_TimerStart("MaximalSlicingAxi_construct_matrix");
    ret = construct_matrix(ms, ms->mat, ms->rhs, &rhs_max);
    CCTK_TimerStop("MaximalSlicingAxi_construct_matrix");
    if (ret < 0)
        return ret;

    if (rhs_max < EPS) {
        memset(ms->coeffs, 0, sizeof(*ms->coeffs) * ms->nb_coeffs);
        if (ms->cl_queue) {
            clEnqueueWriteBuffer(ms->cl_queue, ms->ocl_coeffs, 1, 0, N * sizeof(double),
                                 ms->coeffs, 0, NULL, NULL);
        }
        return 0;
    }

    /* solve for the coeffs */
    if (ms->steps_since_inverse < 128) {
        BiCGSTABContext *b = &ms->bicgstab;
        int64_t start = gettime();

        CCTK_TimerStart("MaximalSlicingAxi_solve_BiCGSTAB");
        if (ms->cl_queue) {
            ret = solve_bicgstab_cl(b, ms->cl_queue, ms->nb_coeffs, ms->mat, ms->rhs, ms->ocl_coeffs);
            clEnqueueReadBuffer(ms->cl_queue, ms->ocl_coeffs, 1, 0, sizeof(double) * N,
                                ms->coeffs, 0, NULL, NULL);
        } else
            ret = solve_bicgstab(b, ms->nb_coeffs, ms->mat, ms->rhs, ms->coeffs);
        CCTK_TimerStop("MaximalSlicingAxi_solve_BiCGSTAB");

        if (ret >= 0) {
            b->time_total += gettime() - start;
            b->solve_total++;
            ms->steps_since_inverse++;

            if (!(b->solve_total & 127)) {
                fprintf(stderr, "BiCGSTAB %ld solves, %ld iterations, total time %ld, avg iterations per solve %g, avg time per solve %g, avg time per iteration %g\n",
                        b->solve_total, b->iter_total, b->time_total, (double)b->iter_total / b->solve_total, (double)b->time_total / b->solve_total, (double)b->time_total / b->iter_total);
                fprintf(stderr, "LU %ld solves, total time %ld, avg time per solve %g\n", ms->lu_solves_total, ms->lu_solves_time, (double)ms->lu_solves_time / ms->lu_solves_total);
            }
#if 0
            {
                double min, max;
                gsl_vector_memcpy(b->y, ms->rhs);
                cblas_dgemv(CblasColMajor, CblasNoTrans, ms->mat->size1, ms->mat->size2, -1.0,
                            ms->mat->data, ms->mat->tda, ms->coeffs->data, 1, 1.0, b->y->data, 1);
                gsl_vector_minmax(b->y, &min, &max);
                if (fabs(min) > 1e-11 || fabs(max) > 1e-11)
                    abort();
            }
#endif
        }
    } else
        ret = -1;

    if (ret < 0) {
        double *tmpv;
        double *tmpm;
        int64_t start;

        CCTK_TimerStart("MaximalSlicingAxi_solve_LU");
        start = gettime();

        lu_invert(ms->nb_coeffs, ms->mat, ms->rhs, ms->ipiv);
        ms->lu_solves_time += gettime() - start;
        ms->lu_solves_total++;
        CCTK_TimerStop("MaximalSlicingAxi_solve_LU");

        tmpv = ms->coeffs;
        ms->coeffs = ms->rhs;
        ms->rhs = tmpv;

        tmpm = ms->mat;
        ms->mat = ms->bicgstab.k;
        ms->bicgstab.k = tmpm;

        if (ms->cl_queue) {
            cl_event events[2];
            clEnqueueWriteBuffer(ms->cl_queue, ms->bicgstab.cl_k, 0, 0, N * N * sizeof(double),
                                 ms->bicgstab.k, 0, NULL, &events[0]);
            clEnqueueWriteBuffer(ms->cl_queue, ms->ocl_coeffs, 0, 0, N * sizeof(double),
                                 ms->coeffs, 0, NULL, &events[1]);
            clWaitForEvents(2, events);
        }

        ms->steps_since_inverse = 0;
    }


    return ret;
}