aboutsummaryrefslogtreecommitdiff
path: root/src/GeneralizedPolynomial-Uniform/common/1d.log
blob: c3e91683e07df2c8ae35f55ba53bd1568f762eb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    |\^/|     Maple 7 (IBM INTEL LINUX)
._|\|   |/|_. Copyright (c) 2001 by Waterloo Maple Inc.
 \  MAPLE  /  All rights reserved. Maple is a registered trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
# util.maple -- misc utility routines
# $Id: util.maple,v 1.3 2002/05/19 13:12:18 jthorn Exp $
> 
#
# fix_rationals - convert numbers to RATIONAL() calls
# nonmatching_names - find names in a list which *don't* have a specified prefix
# sprint_numeric_list - convert a numeric list to a valid C identifier suffix
# print_name_list_dcl - print a C declaration for a list of names
#
# hypercube_points - compute all (integer) points in an N-dimensional hypercube
#
# ftruncate - truncate a file to zero length
#
> 
################################################################################
################################################################################
################################################################################
> 
#
# This function converts all {integer, rational} subexpressions of its
# input except integer exponents and -1 factors in products, into function
# calls
#	RATIONAL(num,den)
# This is useful in conjunction with the  C() library function, since
#
#	C( (1/3) * foo * bar )
#		t0 = foo*bar/3;
#
# generates a (slow) division (and runs the risk of mixed-mode-arithmetic
# problems), while
#
#	C((1.0/3.0) * foo * bar);
#	     t0 = 0.3333333333*foo*bar;
#
# suffers from roundoff error.  With this function,
#
#	fix_rationals((1/3) * foo * bar);
#	     RATIONAL(1,3) foo bar
#	C(%);
#	     t0 = RATIONAL(1.0,3.0)*foo*bar;
#
# which a C preprocessor macro can easily convert to the desired
#
#	     t0 = (1.0/3.0)*foo*bar;
#
# Additionally, this function can be told to leave certain types of
# subexpressions unconverged.  For example,
#	fix_rationals(expr, type, specfunc(integer, DATA));
# will leave all subexpressions of the form  DATA(integer arguments)
# unconverted.
#
# Arguments:
# expr = (in) The expression to be converted.
# inert_fn = (optional in)
#	     If specified, this argument should be a Boolean procedure
#	     or the name of a Boolean procedure.  This procedure should
#	     take one or more argument, and return true if and only if
#	     the first argument should *not* be converted, i.e. if we
#	     should leave this expression unchanged.  See the last
#	     example above.
# ... = (optional in)
#	Any further arguments are passed as additional arguments to
#	the inert_fn procedure.
#
> fix_rationals :=
> proc(
>     expr::{
> 	        algebraic, name = algebraic,
> 	  list({algebraic, name = algebraic}),
> 	  set ({algebraic, name = algebraic})
> 	  },
>     inert_fn::{name, procedure}
>     )
> local nn, k,
>       base, power, fbase, fpower,
>       fn, fn_args_list,
>       num, den, mult;
> 
# do we want to convert this expression?
> if ((nargs >= 2) and inert_fn(expr, args[3..nargs]))
>    then return expr;
> end if;
> 
# recurse over lists and sets
> if (type(expr, {list,set}))
>    then return map(fix_rationals, expr, args[2..nargs]);
> end if;
> 
# recurse over equation right hand sides
> if (type(expr, name = algebraic))
>    then return ( lhs(expr) = fix_rationals(rhs(expr), args[2..nargs]) );
> end if;
> 
# recurse over functions other than  RATIONAL()
> if (type(expr, function))
>    then
> 	fn := op(0, expr);
> 	if (fn <> 'RATIONAL')
> 	   then
> 		fn_args_list := [op(expr)];
> 		fn_args_list := map(fix_rationals, fn_args_list, args[2..nargs]);
> 		fn; return '%'( op(fn_args_list) );
> 	end if;
> end if;
> 
> nn := nops(expr);
> 
# recurse over sums
> if (type(expr, `+`))
>    then return sum('fix_rationals(op(k,expr), args[2..nargs])', 'k'=1..nn);
> end if;
> 
# recurse over products
# ... leaving leading -1 factors intact, i.e. not converted to RATIONAL(-1,1)
> if (type(expr, `*`))
>    then
> 	if (op(1, expr) = -1)
> 	   then return -1*fix_rationals(remove(type, expr, 'identical(-1)'),
> 				        args[2..nargs]);
> 	   else return product('fix_rationals(op(k,expr), args[2..nargs])',
> 			       'k'=1..nn);
> 	end if;
> end if;
> 
# recurse over powers
# ... leaving integer exponents intact
> if (type(expr, `^`))
>    then
> 	base := op(1, expr);
> 	power := op(2, expr);
> 
> 	fbase := fix_rationals(base, args[2..nargs]);
> 	if (type(power, integer))
> 	   then fpower := power;
> 	   else fpower := fix_rationals(power, args[2..nargs]);
> 	end if;
> 	return fbase ^ fpower;
> end if;
> 
# fix integers and fractions
> if (type(expr, integer))
>    then return 'RATIONAL'(expr, 1);
> end if;
> if (type(expr, fraction))
>    then
> 	num := op(1, expr);
> 	den := op(2, expr);
> 
> 	return 'RATIONAL'(num, den);
> end if;
> 
# turn Maple floating-point into integer fraction, then recursively fix that
> if (type(expr, float))
>    then
> 	mult := op(1, expr);
> 	power := op(2, expr);
> 	return fix_rationals(mult * 10^power, args[2..nargs]);
> end if;
> 
# identity op on names
> if (type(expr, name))
>    then return expr;
> end if;
> 
# unknown type
> error "%0",
>       "unknown type for expr!",
>       "   whattype(expr) = ", whattype(expr),
>       "   expr = ", expr;
> end proc;
fix_rationals := proc(expr::{algebraic, name = algebraic,
list({algebraic, name = algebraic}), set({algebraic, name = algebraic})},
inert_fn::{procedure, name})
local nn, k, base, power, fbase, fpower, fn, fn_args_list, num, den, mult;
    if 2 <= nargs and inert_fn(expr, args[3 .. nargs]) then return expr
    end if;
    if type(expr, {set, list}) then
        return map(fix_rationals, expr, args[2 .. nargs])
    end if;
    if type(expr, name = algebraic) then
        return lhs(expr) = fix_rationals(rhs(expr), args[2 .. nargs])
    end if;
    if type(expr, function) then
        fn := op(0, expr);
        if fn <> 'RATIONAL' then
            fn_args_list := [op(expr)];
            fn_args_list :=
                map(fix_rationals, fn_args_list, args[2 .. nargs]);
            fn;
            return '%'(op(fn_args_list))
        end if
    end if;
    nn := nops(expr);
    if type(expr, `+`) then return
        sum('fix_rationals(op(k, expr), args[2 .. nargs])', 'k' = 1 .. nn)
    end if;
    if type(expr, `*`) then
        if op(1, expr) = -1 then return -fix_rationals(
            remove(type, expr, 'identical(-1)'), args[2 .. nargs])
        else return product('fix_rationals(op(k, expr), args[2 .. nargs])',
            'k' = 1 .. nn)
        end if
    end if;
    if type(expr, `^`) then
        base := op(1, expr);
        power := op(2, expr);
        fbase := fix_rationals(base, args[2 .. nargs]);
        if type(power, integer) then fpower := power
        else fpower := fix_rationals(power, args[2 .. nargs])
        end if;
        return fbase^fpower
    end if;
    if type(expr, integer) then return 'RATIONAL'(expr, 1) end if;
    if type(expr, fraction) then
        num := op(1, expr); den := op(2, expr); return 'RATIONAL'(num, den)
    end if;
    if type(expr, float) then
        mult := op(1, expr);
        power := op(2, expr);
        return fix_rationals(mult*10^power, args[2 .. nargs])
    end if;
    if type(expr, name) then return expr end if;
    error "%0", "unknown type for expr!", "   whattype(expr) = ",
        whattype(expr), "   expr = ", expr
end proc

> 
################################################################################
> 
#
# This function finds names in a list which *don't* have a specified prefix.
#
# Arguments:
# name_list = A list of the names.
# prefix = The prefix we want to filter out.
#
# Results:
# This function returns the subset list of names which don't have the
# specified prefix.
# 
> nonmatching_names :=
> proc( name_list::list({name,string}), prefix::{name,string} )
> 
> select(   proc(n)
> 	  evalb(not StringTools[IsPrefix](prefix,n));
> 	  end proc
> 	,
> 	  name_list
>       );
> end proc;
nonmatching_names := proc(
name_list::list({name, string}), prefix::{name, string})
    select(proc(n) evalb(not StringTools[IsPrefix](prefix, n)) end proc,
    name_list)
end proc

> 
################################################################################
> 
#
# This function converts a numeric list to a string which is a valid
# C identifier suffix: elements are separated by "_", decimal points are
# replaced by "x", and all nonzero values have explicit +/- signs, which
# are replaced by "p"/"m".
#
# For example, [0,-3.5,+4] --> "0_m3x5_p4".
#
> sprint_numeric_list :=
> proc(nlist::list(numeric))
> 
# generate preliminary string, eg "+0_-3.5_+4"
> map2(sprintf, "%+a", nlist);
> ListTools[Join](%, "_");
> cat(op(%));
> 
# fixup bad characters
> StringTools[SubstituteAll](%, "+0", "0");
> StringTools[CharacterMap](".+-", "xpm", %);
> 
> return %;
> end proc;
sprint_numeric_list := proc(nlist::list(numeric))
    map2(sprintf, "%+a", nlist);
    ListTools[Join](%, "_");
    cat(op(%));
    StringTools[SubstituteAll](%, "+0", "0");
    StringTools[CharacterMap](".+-", "xpm", %);
    return %
end proc

> 
################################################################################
> 
#
# This function prints a C declaration for a list of names.
#
# Argument:
# name_list = A list of the names.
# name_type = The C type of the names, eg. "double".
# file_name = The file name to write the declaration to.  This is
#	      truncated before writing.
#
> print_name_list_dcl :=
> proc( name_list::list({name,string}),
>       name_type::string,
>       file_name::string )
> local blanks, separator_string;
> 
> ftruncate(file_name);
> 
# a sequence of blanks with the same length as name_type
> seq(" ", i=1..length(name_type));
> 
# string to separate names
> separator_string := cat(",\n", %, " ");
> 
> map(convert, name_list, string);
> ListTools[Join](%, separator_string);
> cat(op(%));
> 
> fprintf(file_name,
> 	"%s %s;\n",
> 	name_type, %);
> 
> fclose(file_name);
> NULL;
> end proc;
print_name_list_dcl := proc(
name_list::list({name, string}), name_type::string, file_name::string)
local blanks, separator_string;
    ftruncate(file_name);
    seq(" ", i = 1 .. length(name_type));
    separator_string := cat(",\n", %, " ");
    map(convert, name_list, string);
    ListTools[Join](%, separator_string);
    cat(op(%));
    fprintf(file_name, "%s %s;\n", name_type, %);
    fclose(file_name);
    NULL
end proc

> 
################################################################################
################################################################################
################################################################################
> 
#
# This function computes a list of all the (integer) points in an
# N-dimensional hypercube, in lexicographic order.  The present
# implementation requires N <= 4.
#
# Arguments:
# cmin,cmax = N-element lists of cube minimum/maximum coordinates.
#
# Results:
# The function returns a set of d-element lists giving the coordinates.
# For example,
#	hypercube([0,0], [2,1]
# returns
#	{ [0,0], [0,1], [1,0], [1,1], [2,0], [2,1] }
> hypercube_points :=
> proc(cmin::list(integer), cmax::list(integer))
> local N, i,j,k,l;
> 
> N := nops(cmin);
> if (nops(cmax) <> N)
>    then error 
> 	"must have same number of dimensions for min and max coordinates!";
> fi;
> 
> if   (N = 1)
>    then return [seq([i], i=cmin[1]..cmax[1])];
> elif (N = 2)
>    then return [
> 		 seq(
> 		   seq([i,j], j=cmin[2]..cmax[2]),
> 		   i=cmin[1]..cmax[1])
> 	       ];
> elif (N = 3)
>    then return [
> 		 seq(
> 		   seq(
> 		     seq([i,j,k], k=cmin[3]..cmax[3]),
> 		     j=cmin[2]..cmax[2] ),
> 		   i=cmin[1]..cmax[1])
> 	       ];
> elif (N = 4)
>    then return [
> 		 seq(
> 		   seq(
> 		     seq(
> 		       seq([i,j,k,l], l=cmin[4]..cmax[4]),
> 		       k=cmin[3]..cmax[3] ),
> 		     j=cmin[2]..cmax[2]),
> 		   i=cmin[1]..cmax[1])
> 	       ];
> else
> 	error "implementation restriction: must have N <= 4, got %1!", N;
> fi;
> end proc;
hypercube_points := proc(cmin::list(integer), cmax::list(integer))
local N, i, j, k, l;
    N := nops(cmin);
    if nops(cmax) <> N then error
        "must have same number of dimensions for min and max coordinates!"
    end if;
    if N = 1 then return [seq([i], i = cmin[1] .. cmax[1])]
    elif N = 2 then return
        [seq(seq([i, j], j = cmin[2] .. cmax[2]), i = cmin[1] .. cmax[1])]
    elif N = 3 then return [seq(
        seq(seq([i, j, k], k = cmin[3] .. cmax[3]), j = cmin[2] .. cmax[2])
        , i = cmin[1] .. cmax[1])]
    elif N = 4 then return [seq(seq(seq(
        seq([i, j, k, l], l = cmin[4] .. cmax[4]), k = cmin[3] .. cmax[3]),
        j = cmin[2] .. cmax[2]), i = cmin[1] .. cmax[1])]
    else error "implementation restriction: must have N <= 4, got %1!", N
    end if
end proc

> 
################################################################################
################################################################################
################################################################################
> 
#
# This function truncates a file to 0 length if it exists, or creates
# it at that length if it doesn't exist.
#
# Arguments:
# file_name = (in) The name of the file.
#
> ftruncate :=
> proc(file_name::string)
> fopen(file_name, 'WRITE');
> fclose(%);
> NULL;
> end proc;
ftruncate :=

    proc(file_name::string) fopen(file_name, 'WRITE'); fclose(%); NULL end proc

# interpolate.maple -- compute generalized interpolation formulas/coefficients
# $Id: interpolate.maple,v 1.4 2002/05/14 15:52:50 jthorn Exp $
> 
#
# <<<representation of numbers, data values, etc>>>
# polynomial_interpolant - compute polynomial interpolant
# coeff_as_lc_of_data - coefficients of ... (linear combination of data)
#
# print_coeff__lc_of_data - print C code to compute coefficients
# print_data_var_assign - print C code to assign data-value variables
# print_interp_coeff_var_store - print C code to store coeff vars "somewhere"
# print_interp_cmpt__lc_of_data - print C code for computation of interpolant
#
# coeff_name - name of coefficient of data at a given [m] coordinate
# data_var_name - name of variable storing data value at a given [m] coordinate
#
> 
################################################################################
> 
#
# ***** representation of numbers, data values, etc *****
#
# We use RATIONAL(p.0,q.0) to denote the rational number p/q.
#
# We use DATA(...) to represent the data values being interpolated at a
# specified [m] coordinate, where the arguments are the [m] coordinates.
#
# We use COEFF(...) to represent the molecule coefficient at a specified
# [m] coordinate, where the arguments are the [m] coordinates.
#
# For example, the usual 1-D centered 2nd order 1st derivative molecule
# would be written
#	RATIONAL(-1.0,2.0)*DATA(-1) + RATIONA(1.0,2.0)*DATA(1)
# and its coefficients as
#	COEFF(-1) = RATIONAL(-1.0,2.0)
#	COEFF(1) = RATIONAL(1.0,2.0)
#
> 
################################################################################
################################################################################
################################################################################
> 
#
# This function computes a polynomial interpolant in any number of dimensions.
#
# Arguments:
# fn = The interpolation function.  This should be a procedure in the
#      coordinates, having the coefficients as global variables.  For
#      example,
#	  proc(x,y) c00 + c10*x + c01*y end proc
# coeff_list = A set of the interpolation coefficients (coefficients in
#	       the interpolation function), for example [c00, c10, c01].
# coord_list = A list of the coordinates (independent variables in the
#	       interpolation function), for example [x,y].
# posn_list = A list of positions (each a list of numeric values) where the
#	      interpolant is to use data, for example  hypercube([0,0], [1,1]).
#	      Any positions may be used; if they're redundant (as in the
#	      example) the least-squares interpolant is computed.
#
# Results:
# This function returns the interpolating polynomial, in the form of
# an algebraic expression in the coordinates and the data values.
#
> polynomial_interpolant :=
> proc(
>       fn::procedure, coeff_list::list(name),
>       coord_list::list(name), posn_list::list(list(numeric))
>     )
> local posn, data_eqns, coeff_eqns;
> 
# coefficients of interpolating polynomial
> data_eqns := {  seq( fn(op(posn))='DATA'(op(posn)) , posn=posn_list )  };
> coeff_eqns := linalg[leastsqrs](data_eqns, {op(coeff_list)});
> if (has(coeff_eqns, '_t'))
>    then error "interpolation coefficients aren't uniquely determined!";
> end if;
> 
# interpolant as a polynomial in the coordinates
> return subs(coeff_eqns, eval(fn))(op(coord_list));
> end proc;
polynomial_interpolant := proc(fn::procedure, coeff_list::list(name),
coord_list::list(name), posn_list::list(list(numeric)))
local posn, data_eqns, coeff_eqns;
    data_eqns := {seq(fn(op(posn)) = 'DATA'(op(posn)), posn = posn_list)};
    coeff_eqns := linalg[leastsqrs](data_eqns, {op(coeff_list)});
    if has(coeff_eqns, '_t') then
        error "interpolation coefficients aren't uniquely determined!"
    end if;
    return subs(coeff_eqns, eval(fn))(op(coord_list))
end proc

> 
################################################################################
> 
#
# This function takes as input an interpolating polynomial, expresses
# it as a linear combination of the data values, and returns the coefficeints
# of that form.
# 
# Arguments:
# interpolant = The interpolating polynomial (an algebraic expression
#		in the coordinates and the data values).
# posn_list = The same list of positions as was used to compute the
#	      interpolating polynomial.
#
# Results:
# This function returns the coefficients, as a list of equations of the
# form   COEFF(...) = value , where each  value  is a polynomial in the
# coordinates.  The order of the list matches that of  posn_list.
#
> coeff_as_lc_of_data :=
> proc(
>       interpolant::algebraic,
>       posn_list::list(list(numeric))
>     )
> local data_list, interpolant_as_lc_of_data;
> 
# interpolant as a linear combination of the data values
> data_list := [ seq( 'DATA'(op(posn)) , posn=posn_list ) ];
> interpolant_as_lc_of_data := collect(interpolant, data_list);
> 
# coefficients of the data values in the linear combination
> return map(
> 	      proc(posn::list(numeric))
> 	      coeff(interpolant_as_lc_of_data, DATA(op(posn)));
> 	      'COEFF'(op(posn)) = %;
> 	      end proc
> 	    ,
> 	      posn_list
> 	  );
> end proc;
coeff_as_lc_of_data := proc(
interpolant::algebraic, posn_list::list(list(numeric)))
local data_list, interpolant_as_lc_of_data;
    data_list := [seq('DATA'(op(posn)), posn = posn_list)];
    interpolant_as_lc_of_data := collect(interpolant, data_list);
    return map(proc(posn::list(numeric))
            coeff(interpolant_as_lc_of_data, DATA(op(posn)));
            'COEFF'(op(posn)) = %
        end proc, posn_list)
end proc

> 
################################################################################
################################################################################
################################################################################
> 
#
# This function prints C expressions for the coefficients of an
# interpolating polynomial.  (The polynomial is expressed as linear
# combinations of the data values with coefficients which are
# RATIONAL(p,q) calls.)
#
# Arguments:
# coeff_list = A list of the coefficients, as returned from
#	       coeff_as_lc_of_data() .
# coeff_name_prefix = A prefix string for the coefficient names.
# temp_name_type = The C type to be used for Maple-introduced temporary
#		   names, eg. "double".
# file_name = The file name to write the coefficients to.  This is
#	      truncated before writing.
#
> print_coeff__lc_of_data :=
> proc( coeff_list::list(specfunc(numeric,COEFF) = algebraic),
>       coeff_name_prefix::string,
>       temp_name_type::string,
>       file_name::string )
> global `codegen/C/function/informed`;
> local coeff_list2, cmpt_list, temp_name_list;
> 
# convert LHS of each equation from a COEFF() call (eg COEFF(-1,+1))
# to a Maple/C variable name (eg coeff_I_m1_p1)
> coeff_list2 := map(
> 		      proc(coeff_eqn::specfunc(numeric,COEFF) = algebraic)
> 		      local posn;
> 		      posn := [op(lhs(coeff_eqn))];
> 		      coeff_name(posn,coeff_name_prefix);
> 		      convert(%, name);	# codegen[C] wants LHS
> 					# to be an actual Maple *name*
> 		      % = fix_rationals(rhs(coeff_eqn));
> 		      end proc
> 		    ,
> 		      coeff_list
> 		  );
> 
#
# generate the C code
#
> 
# tell codegen[C] not to warn about unknown RATIONAL() and DATA() "fn calls"
# via undocumented :( global table
> `codegen/C/function/informed`['RATIONAL'] := true;
> `codegen/C/function/informed`['DATA'] := true;
> 
> ftruncate(file_name);
> 
# optimized computation sequence for all the coefficients
# (may use local variables t0,t1,t2,...)
> cmpt_list := [codegen[optimize](coeff_list2, tryhard)];
> 
# list of the t0,t1,t2,... local variables
> temp_name_list := nonmatching_names(map(lhs,cmpt_list), coeff_name_prefix);
> 
# declare the t0,t1,t2,... local variables (if there are any)
> if (nops(temp_name_list) > 0)
>    then print_name_list_dcl(%, temp_name_type, file_name);
> fi;
> 
# now print the optimized computation sequence
> codegen[C](cmpt_list, filename=file_name);
> 
> fclose(file_name);
> 
> NULL;
> end proc;
print_coeff__lc_of_data := proc(
coeff_list::list(specfunc(numeric, COEFF) = algebraic),
coeff_name_prefix::string, temp_name_type::string, file_name::string)
local coeff_list2, cmpt_list, temp_name_list;
global `codegen/C/function/informed`;
    coeff_list2 := map(proc(
        coeff_eqn::(specfunc(numeric, COEFF) = algebraic))
        local posn;
            posn := [op(lhs(coeff_eqn))];
            coeff_name(posn, coeff_name_prefix);
            convert(%, name);
            % = fix_rationals(rhs(coeff_eqn))
        end proc, coeff_list);
    `codegen/C/function/informed`['RATIONAL'] := true;
    `codegen/C/function/informed`['DATA'] := true;
    ftruncate(file_name);
    cmpt_list := [codegen[optimize](coeff_list2, tryhard)];
    temp_name_list :=
        nonmatching_names(map(lhs, cmpt_list), coeff_name_prefix);
    if 0 < nops(temp_name_list) then
        print_name_list_dcl(%, temp_name_type, file_name)
    end if;
    codegen[C](cmpt_list, filename = file_name);
    fclose(file_name);
    NULL
end proc

> 
################################################################################
> 
#
# This function prints a sequence of C expression to assign the data-value
# variables, eg
#	data_m1_p1 = DATA(-1,1);
#
# Arguments:
# posn_list = The same list of positions as was used to compute the
#	      interpolating polynomial.
# data_var_name_prefix = A prefix string for the data variable names.
# file_name = The file name to write the coefficients to.  This is
#	      truncated before writing.
#
> print_data_var_assign :=
> proc(
>       posn_list::list(list(numeric)),
>       data_var_name_prefix::string,
>       file_name::string
>     )
> 
> ftruncate(file_name);
> map(
>        proc(posn::list(numeric))
>        fprintf(file_name,
> 	       "%s = %a;\n",
> 	       data_var_name(posn,data_var_name_prefix),
> 	       DATA(op(posn)));
>        end proc
>      ,
>        posn_list
>    );
> fclose(file_name);
> 
> NULL;
> end proc;
print_data_var_assign := proc(posn_list::list(list(numeric)),
data_var_name_prefix::string, file_name::string)
    ftruncate(file_name);
    map(proc(posn::list(numeric))
            fprintf(file_name, "%s = %a;\n",
            data_var_name(posn, data_var_name_prefix), DATA(op(posn)))
        end proc, posn_list);
    fclose(file_name);
    NULL
end proc

> 
################################################################################
> 
#
# This function prints a sequence of C expression to store the interpolation
# coefficients in  COEFF(...)  expressions, eg
#	COEFF(1,-1) = factor * coeff_dx_p1_m1;
#
# Arguments:
# posn_list = The same list of positions as was used to compute the
#	      interpolating polynomial.
# RHS_factor_name = If this string is non-empty, then the coefficient is
#		    multiplied by this factor before being stored, eg
#		    setting this to "factor" would give the example above.
#		    If this string is empty (""), the multiplication is
#		    omitted, eg
#			COEFF(1,-1) = coeff_dx_p1_m1;
# coeff_name_prefix = A prefix string for the coefficient names.
# file_name = The file name to write the coefficients to.  This is
#	      truncated before writing.
#
> print_interp_coeff_var_store :=
> proc(
>       posn_list::list(list(numeric)),
>       RHS_factor_name::string,
>       coeff_name_prefix::string,
>       file_name::string
>     )
> 
> ftruncate(file_name);
> map(
>        proc(posn::list(numeric))
>        if (length(RHS_factor_name) > 0)
> 	  then fprintf(file_name,
> 		       "%a = %s * %s;\n",
> 		       'COEFF'(op(posn)),
> 		       RHS_factor_name,
> 		       coeff_name(posn,coeff_name_prefix));
> 	  else fprintf(file_name,
> 		       "%a = %s;\n",
> 		       'COEFF'(op(posn)),
> 		       coeff_name(posn,coeff_name_prefix));
>        end if;
>        end proc
>      ,
>        posn_list
>    );
> fclose(file_name);
> 
> NULL;
> end proc;
print_interp_coeff_var_store := proc(posn_list::list(list(numeric)),
RHS_factor_name::string, coeff_name_prefix::string, file_name::string)
    ftruncate(file_name);
    map(proc(posn::list(numeric))
            if 0 < length(RHS_factor_name) then fprintf(file_name,
                "%a = %s * %s;\n", 'COEFF'(op(posn)), RHS_factor_name,
                coeff_name(posn, coeff_name_prefix))
            else fprintf(file_name, "%a = %s;\n", 'COEFF'(op(posn)),
                coeff_name(posn, coeff_name_prefix))
            end if
        end proc, posn_list);
    fclose(file_name);
    NULL
end proc

> 
################################################################################
> 
#
# This function prints a C expression to compute the interpolant,
# using the coefficients computed by  print_coeff__lc_of_data()
# (i.e. expressing the interpolant as a linear combination of the
# data values).
#
# Arguments:
# posn_list = The same list of positions as was used to compute the
#	      interpolating polynomial.
# result_var_name = The (string) name of the variable to which the
#		    result is to be assigned.
# coeff_name_prefix = A prefix string for the coefficient names.
# data_var_name_prefix = A prefix string for the data variable names.
# file_name = The file name to write the coefficients to.  This is
#	      truncated before writing.
#
> print_interp_cmpt__lc_of_data :=
> proc(
>       posn_list::list(list(numeric)),
>       result_var_name::string,
>       coeff_name_prefix::string,
>       data_var_name_prefix::string,
>       file_name::string
>     )
> 
> ftruncate(file_name);
> 
> fprintf(file_name, "%s =\n", result_var_name);
> 
# list of "coeff*data_var" terms
> map(
>        proc(posn::list(numeric))
>        sprintf("%s*%s",
> 	       coeff_name(posn,coeff_name_prefix),
> 	       data_var_name(posn,data_var_name_prefix));
>        end proc
>      ,
>        posn_list
>    );
> 
> ListTools[Join](%, "\n\t+ ");
> cat(op(%));
> fprintf(file_name, "\t%s;\n", %);
> 
> fclose(file_name);
> 
> NULL;
> end proc;
print_interp_cmpt__lc_of_data := proc(posn_list::list(list(numeric)),
result_var_name::string, coeff_name_prefix::string,
data_var_name_prefix::string, file_name::string)
    ftruncate(file_name);
    fprintf(file_name, "%s =\n", result_var_name);
    map(proc(posn::list(numeric))
            sprintf("%s*%s", coeff_name(posn, coeff_name_prefix),
            data_var_name(posn, data_var_name_prefix))
        end proc, posn_list);
    ListTools[Join](%, "\n\t+ ");
    cat(op(%));
    fprintf(file_name, "\t%s;\n", %);
    fclose(file_name);
    NULL
end proc

> 
################################################################################
################################################################################
################################################################################
> 
#
# This function computes the name of the coefficient of the data at a
# given [m] position, i.e. it encapsulates our naming convention for this.
#
# Arguments:
# posn = (in) The [m] coordinates.
# name_prefix = A prefix string for the coefficient name.
#
# Results:
# The function returns the coefficient, as a Maple string.
#
> coeff_name :=
> proc(posn::list(numeric), name_prefix::string)
> cat(name_prefix, sprint_numeric_list(posn));
> end proc;
coeff_name := proc(posn::list(numeric), name_prefix::string)
    cat(name_prefix, sprint_numeric_list(posn))
end proc

> 
################################################################################
> 
#
# This function computes the name of the variable in which the C code
# will store the input data at a given [m] position, i.e. it encapsulates
# our naming convention for this.
#
# Arguments:
# posn = (in) The [m] coordinates.
# name_prefix = A prefix string for the variable name.
#
# Results:
# The function returns the variable name, as a Maple string.
#
> data_var_name :=
> proc(posn::list(numeric), name_prefix::string)
> cat(name_prefix, sprint_numeric_list(posn));
> end proc;
data_var_name := proc(posn::list(numeric), name_prefix::string)
    cat(name_prefix, sprint_numeric_list(posn))
end proc

# Maple code to compute lists of point positions in hypercube-shaped molecules
# $Id: $
> 
################################################################################
> 
#
# 1D interpolation points
#
> posn_list_1d_size2 := hypercube_points([ 0], [+1]);
                        posn_list_1d_size2 := [[0], [1]]

> posn_list_1d_size3 := hypercube_points([-1], [+1]);
                     posn_list_1d_size3 := [[-1], [0], [1]]

> posn_list_1d_size4 := hypercube_points([-1], [+2]);
                  posn_list_1d_size4 := [[-1], [0], [1], [2]]

> posn_list_1d_size5 := hypercube_points([-2], [+2]);
               posn_list_1d_size5 := [[-2], [-1], [0], [1], [2]]

> posn_list_1d_size6 := hypercube_points([-2], [+3]);
             posn_list_1d_size6 := [[-2], [-1], [0], [1], [2], [3]]

> posn_list_1d_size7 := hypercube_points([-3], [+3]);
          posn_list_1d_size7 := [[-3], [-2], [-1], [0], [1], [2], [3]]

> 
################################################################################
> 
#
# 2D interpolation points (Fortran ordering)
#
> posn_list_2d_size2 := map(ListTools[Reverse],
> 			  hypercube_points([ 0, 0], [+1,+1]));
             posn_list_2d_size2 := [[0, 0], [1, 0], [0, 1], [1, 1]]

> posn_list_2d_size3 := map(ListTools[Reverse],
> 			  hypercube_points([-1,-1], [+1,+1]));
posn_list_2d_size3 := [[-1, -1], [0, -1], [1, -1], [-1, 0], [0, 0], [1, 0],

    [-1, 1], [0, 1], [1, 1]]

> posn_list_2d_size4 := map(ListTools[Reverse],
> 			  hypercube_points([-1,-1], [+2,+2]));
posn_list_2d_size4 := [[-1, -1], [0, -1], [1, -1], [2, -1], [-1, 0], [0, 0],

    [1, 0], [2, 0], [-1, 1], [0, 1], [1, 1], [2, 1], [-1, 2], [0, 2], [1, 2],

    [2, 2]]

> posn_list_2d_size5 := map(ListTools[Reverse],
> 			  hypercube_points([-2,-2], [+2,+2]));
posn_list_2d_size5 := [[-2, -2], [-1, -2], [0, -2], [1, -2], [2, -2], [-2, -1],

    [-1, -1], [0, -1], [1, -1], [2, -1], [-2, 0], [-1, 0], [0, 0], [1, 0],

    [2, 0], [-2, 1], [-1, 1], [0, 1], [1, 1], [2, 1], [-2, 2], [-1, 2], [0, 2],

    [1, 2], [2, 2]]

> 
################################################################################
> 
#
# 3D interpolation points (Fortran ordering)
#
> posn_list_3d_size2 := map(ListTools[Reverse],
> 			  hypercube_points([ 0, 0, 0], [+1,+1,+1]));
posn_list_3d_size2 := [[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1],

    [1, 0, 1], [0, 1, 1], [1, 1, 1]]

> posn_list_3d_size3 := map(ListTools[Reverse],
> 			  hypercube_points([-1,-1,-1], [+1,+1,+1]));
posn_list_3d_size3 := [[-1, -1, -1], [0, -1, -1], [1, -1, -1], [-1, 0, -1],

    [0, 0, -1], [1, 0, -1], [-1, 1, -1], [0, 1, -1], [1, 1, -1], [-1, -1, 0],

    [0, -1, 0], [1, -1, 0], [-1, 0, 0], [0, 0, 0], [1, 0, 0], [-1, 1, 0],

    [0, 1, 0], [1, 1, 0], [-1, -1, 1], [0, -1, 1], [1, -1, 1], [-1, 0, 1],

    [0, 0, 1], [1, 0, 1], [-1, 1, 1], [0, 1, 1], [1, 1, 1]]

> posn_list_3d_size4 := map(ListTools[Reverse],
> 			  hypercube_points([-1,-1,-1], [+2,+2,+2]));
posn_list_3d_size4 := [[-1, -1, -1], [0, -1, -1], [1, -1, -1], [2, -1, -1],

    [-1, 0, -1], [0, 0, -1], [1, 0, -1], [2, 0, -1], [-1, 1, -1], [0, 1, -1],

    [1, 1, -1], [2, 1, -1], [-1, 2, -1], [0, 2, -1], [1, 2, -1], [2, 2, -1],

    [-1, -1, 0], [0, -1, 0], [1, -1, 0], [2, -1, 0], [-1, 0, 0], [0, 0, 0],

    [1, 0, 0], [2, 0, 0], [-1, 1, 0], [0, 1, 0], [1, 1, 0], [2, 1, 0],

    [-1, 2, 0], [0, 2, 0], [1, 2, 0], [2, 2, 0], [-1, -1, 1], [0, -1, 1],

    [1, -1, 1], [2, -1, 1], [-1, 0, 1], [0, 0, 1], [1, 0, 1], [2, 0, 1],

    [-1, 1, 1], [0, 1, 1], [1, 1, 1], [2, 1, 1], [-1, 2, 1], [0, 2, 1],

    [1, 2, 1], [2, 2, 1], [-1, -1, 2], [0, -1, 2], [1, -1, 2], [2, -1, 2],

    [-1, 0, 2], [0, 0, 2], [1, 0, 2], [2, 0, 2], [-1, 1, 2], [0, 1, 2],

    [1, 1, 2], [2, 1, 2], [-1, 2, 2], [0, 2, 2], [1, 2, 2], [2, 2, 2]]

> posn_list_3d_size5 := map(ListTools[Reverse],
> 			  hypercube_points([-2,-2,-2], [+2,+2,+2]));
posn_list_3d_size5 := [[-2, -2, -2], [-1, -2, -2], [0, -2, -2], [1, -2, -2],

    [2, -2, -2], [-2, -1, -2], [-1, -1, -2], [0, -1, -2], [1, -1, -2],

    [2, -1, -2], [-2, 0, -2], [-1, 0, -2], [0, 0, -2], [1, 0, -2], [2, 0, -2],

    [-2, 1, -2], [-1, 1, -2], [0, 1, -2], [1, 1, -2], [2, 1, -2], [-2, 2, -2],

    [-1, 2, -2], [0, 2, -2], [1, 2, -2], [2, 2, -2], [-2, -2, -1], [-1, -2, -1],

    [0, -2, -1], [1, -2, -1], [2, -2, -1], [-2, -1, -1], [-1, -1, -1],

    [0, -1, -1], [1, -1, -1], [2, -1, -1], [-2, 0, -1], [-1, 0, -1], [0, 0, -1],

    [1, 0, -1], [2, 0, -1], [-2, 1, -1], [-1, 1, -1], [0, 1, -1], [1, 1, -1],

    [2, 1, -1], [-2, 2, -1], [-1, 2, -1], [0, 2, -1], [1, 2, -1], [2, 2, -1],

    [-2, -2, 0], [-1, -2, 0], [0, -2, 0], [1, -2, 0], [2, -2, 0], [-2, -1, 0],

    [-1, -1, 0], [0, -1, 0], [1, -1, 0], [2, -1, 0], [-2, 0, 0], [-1, 0, 0],

    [0, 0, 0], [1, 0, 0], [2, 0, 0], [-2, 1, 0], [-1, 1, 0], [0, 1, 0],

    [1, 1, 0], [2, 1, 0], [-2, 2, 0], [-1, 2, 0], [0, 2, 0], [1, 2, 0],

    [2, 2, 0], [-2, -2, 1], [-1, -2, 1], [0, -2, 1], [1, -2, 1], [2, -2, 1],

    [-2, -1, 1], [-1, -1, 1], [0, -1, 1], [1, -1, 1], [2, -1, 1], [-2, 0, 1],

    [-1, 0, 1], [0, 0, 1], [1, 0, 1], [2, 0, 1], [-2, 1, 1], [-1, 1, 1],

    [0, 1, 1], [1, 1, 1], [2, 1, 1], [-2, 2, 1], [-1, 2, 1], [0, 2, 1],

    [1, 2, 1], [2, 2, 1], [-2, -2, 2], [-1, -2, 2], [0, -2, 2], [1, -2, 2],

    [2, -2, 2], [-2, -1, 2], [-1, -1, 2], [0, -1, 2], [1, -1, 2], [2, -1, 2],

    [-2, 0, 2], [-1, 0, 2], [0, 0, 2], [1, 0, 2], [2, 0, 2], [-2, 1, 2],

    [-1, 1, 2], [0, 1, 2], [1, 1, 2], [2, 1, 2], [-2, 2, 2], [-1, 2, 2],

    [0, 2, 2], [1, 2, 2], [2, 2, 2]]

# Maple code to compute common coefficients for all 1d interpolation schemes
# $Id: 1d.maple,v 1.4 2002/05/14 15:54:01 jthorn Exp $
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=2
#
> 
> data_var_list_1d_size2 := map(data_var_name, posn_list_1d_size2, "data_");
                data_var_list_1d_size2 := ["data_0", "data_p1"]

> 
> print_name_list_dcl(data_var_list_1d_size2, "fp",
> 		    "1d.cube.size2/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size2, "data_",
> 		      "1d.cube.size2/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size2, "", "coeff_I_",
> 			     "1d.cube.size2/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size2, "factor", "coeff_dx_",
> 			     "1d.cube.size2/coeff-dx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size2, "coeff_I_"), "fp",
> 		    "1d.cube.size2/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size2, "coeff_dx_"), "fp",
> 		    "1d.cube.size2/coeff-dx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size2,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size2/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size2,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size2/interp-dx.compute.c");
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=3
#
> 
> data_var_list_1d_size3 := map(data_var_name, posn_list_1d_size3, "data_");
           data_var_list_1d_size3 := ["data_m1", "data_0", "data_p1"]

> 
> print_name_list_dcl(data_var_list_1d_size3, "fp",
> 		    "1d.cube.size3/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size3, "data_",
> 		      "1d.cube.size3/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size3, "", "coeff_I_",
> 			     "1d.cube.size3/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size3, "factor", "coeff_dx_",
> 			     "1d.cube.size3/coeff-dx.store.c");
> print_interp_coeff_var_store(posn_list_1d_size3, "factor", "coeff_dxx_",
> 			     "1d.cube.size3/coeff-dxx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size3, "coeff_I_"), "fp",
> 		    "1d.cube.size3/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size3, "coeff_dx_"), "fp",
> 		    "1d.cube.size3/coeff-dx.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size3, "coeff_dxx_"), "fp",
> 		    "1d.cube.size3/coeff-dxx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size3,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size3/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size3,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size3/interp-dx.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size3,
> 			      "result", "coeff_dxx_", "data_",
> 			      "1d.cube.size3/interp-dxx.compute.c");
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=4
#
> 
> data_var_list_1d_size4 := map(data_var_name, posn_list_1d_size4, "data_");
     data_var_list_1d_size4 := ["data_m1", "data_0", "data_p1", "data_p2"]

> 
> print_name_list_dcl(data_var_list_1d_size4, "fp",
> 		    "1d.cube.size4/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size4, "data_",
> 		      "1d.cube.size4/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size4, "", "coeff_I_",
> 			     "1d.cube.size4/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size4, "factor", "coeff_dx_",
> 			     "1d.cube.size4/coeff-dx.store.c");
> print_interp_coeff_var_store(posn_list_1d_size4, "factor", "coeff_dxx_",
> 			     "1d.cube.size4/coeff-dxx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size4, "coeff_I_"), "fp",
> 		    "1d.cube.size4/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size4, "coeff_dx_"), "fp",
> 		    "1d.cube.size4/coeff-dx.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size4, "coeff_dxx_"), "fp",
> 		    "1d.cube.size4/coeff-dxx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size4,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size4/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size4,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size4/interp-dx.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size4,
> 			      "result", "coeff_dxx_", "data_",
> 			      "1d.cube.size4/interp-dxx.compute.c");
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=5
#
> 
> data_var_list_1d_size5 := map(data_var_name, posn_list_1d_size5, "data_");
data_var_list_1d_size5 :=

    ["data_m2", "data_m1", "data_0", "data_p1", "data_p2"]

> 
> print_name_list_dcl(data_var_list_1d_size5, "fp",
> 		    "1d.cube.size5/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size5, "data_",
> 		      "1d.cube.size5/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size5, "", "coeff_I_",
> 			     "1d.cube.size5/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size5, "factor", "coeff_dx_",
> 			     "1d.cube.size5/coeff-dx.store.c");
> print_interp_coeff_var_store(posn_list_1d_size5, "factor", "coeff_dxx_",
> 			     "1d.cube.size5/coeff-dxx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size5, "coeff_I_"), "fp",
> 		    "1d.cube.size5/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size5, "coeff_dx_"), "fp",
> 		    "1d.cube.size5/coeff-dx.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size5, "coeff_dxx_"), "fp",
> 		    "1d.cube.size5/coeff-dxx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size5,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size5/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size5,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size5/interp-dx.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size5,
> 			      "result", "coeff_dxx_", "data_",
> 			      "1d.cube.size5/interp-dxx.compute.c");
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=6
#
> 
> data_var_list_1d_size6 := map(data_var_name, posn_list_1d_size6, "data_");
data_var_list_1d_size6 :=

    ["data_m2", "data_m1", "data_0", "data_p1", "data_p2", "data_p3"]

> 
> print_name_list_dcl(data_var_list_1d_size6, "fp",
> 		    "1d.cube.size6/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size6, "data_",
> 		      "1d.cube.size6/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size6, "", "coeff_I_",
> 			     "1d.cube.size6/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size6, "factor", "coeff_dx_",
> 			     "1d.cube.size6/coeff-dx.store.c");
> print_interp_coeff_var_store(posn_list_1d_size6, "factor", "coeff_dxx_",
> 			     "1d.cube.size6/coeff-dxx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size6, "coeff_I_"), "fp",
> 		    "1d.cube.size6/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size6, "coeff_dx_"), "fp",
> 		    "1d.cube.size6/coeff-dx.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size6, "coeff_dxx_"), "fp",
> 		    "1d.cube.size6/coeff-dxx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size6,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size6/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size6,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size6/interp-dx.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size6,
> 			      "result", "coeff_dxx_", "data_",
> 			      "1d.cube.size6/interp-dxx.compute.c");
> 
################################################################################
> 
#
# generic stuff for 1d, cube, size=7
#
> 
> data_var_list_1d_size7 := map(data_var_name, posn_list_1d_size7, "data_");
data_var_list_1d_size7 := [

    "data_m3", "data_m2", "data_m1", "data_0", "data_p1", "data_p2", "data_p3"]

> 
> print_name_list_dcl(data_var_list_1d_size7, "fp",
> 		    "1d.cube.size7/data-var.dcl.c");
> print_data_var_assign(posn_list_1d_size7, "data_",
> 		      "1d.cube.size7/data-var.assign.c");
> 
> print_interp_coeff_var_store(posn_list_1d_size7, "", "coeff_I_",
> 			     "1d.cube.size7/coeff-I.store.c");
> print_interp_coeff_var_store(posn_list_1d_size7, "factor", "coeff_dx_",
> 			     "1d.cube.size7/coeff-dx.store.c");
> print_interp_coeff_var_store(posn_list_1d_size7, "factor", "coeff_dxx_",
> 			     "1d.cube.size7/coeff-dxx.store.c");
> 
> print_name_list_dcl(map(coeff_name, posn_list_1d_size7, "coeff_I_"), "fp",
> 		    "1d.cube.size7/coeff-I.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size7, "coeff_dx_"), "fp",
> 		    "1d.cube.size7/coeff-dx.dcl.c");
> print_name_list_dcl(map(coeff_name, posn_list_1d_size7, "coeff_dxx_"), "fp",
> 		    "1d.cube.size7/coeff-dxx.dcl.c");
> 
> print_interp_cmpt__lc_of_data(posn_list_1d_size7,
> 			      "result", "coeff_I_", "data_",
> 			      "1d.cube.size7/interp-I.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size7,
> 			      "result", "coeff_dx_", "data_",
> 			      "1d.cube.size7/interp-dx.compute.c");
> print_interp_cmpt__lc_of_data(posn_list_1d_size7,
> 			      "result", "coeff_dxx_", "data_",
> 			      "1d.cube.size7/interp-dxx.compute.c");
> 
################################################################################
> quit
bytes used=716820, alloc=655240, time=0.16