aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: fb514956a01d3c56f58e283fc07ce2f0631e396d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
\documentclass{article}

\parskip = 2 pt
\oddsidemargin = 0 cm
\textwidth = 16 cm
\topmargin = -1 cm
\textheight = 24 cm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MANPAGE like description setting for options, use as 
% \begin{Lentry} \item[text] text  \end{Lentry}

\usepackage{ifthen,calc}

\newcommand{\entrylabel}[1]{\mbox{\textsf{#1}}\hfil}
\newenvironment{entry}
  {\begin{list}{}
    {\renewcommand{\makelabel}{\entrylabel}
      \setlength{\labelwidth}{90pt}
      \setlength{\leftmargin}{\labelwidth+\labelsep}
    }
  }
  {\end{list}}

\newlength{\Mylen}
\newcommand{\Lentrylabel}[1]{%
  \settowidth{\Mylen}{\textsf{#1}}%
  \ifthenelse{\lengthtest{\Mylen > \labelwidth}}%
    {\parbox[b]{\labelwidth} %  term > labelwidth
      {\makebox[0pt][l]{\textsf{#1}}\\}} %
    {\textsf{#1}} %

  \hfil\relax}
\newenvironment{Lentry}
  {\renewcommand{\entrylabel}{\Lentrylabel}
   \begin{entry}}
  {\end{entry}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

\title{IDScalarWave}
\author{Gabrielle Allen, Horst Beyer}
\date{2001}
\maketitle

\abstract{Initial Data for the 3D Scalar Wave Equation}

\section{Purpose}

This thorn provides different initial data for the 3D scalar wave
equation. 

\section{Spherically Symmetric Solutions}

The general spherically symmetric solution can be written
\begin{equation}
\Psi(r,t) = \frac{1}{r}\left(f(r+t)+g(r-t)\right)
\end{equation}
where the functions $f$ and $g$ can be freely chosen. 

Making the additional requirement of time symmetry at $t=0$, forces
\begin{equation}
f(r)=g(r)
\end{equation}
Thus if the solution at t=0 is given by $\phi(r)$, the general solution
will be
\begin{equation}
\Psi(r,t) = \frac{1}{2r}\left( (r+t)\phi(r+t)+(r-t)\phi(r-t) \right)
\end{equation}

\section{Gaussian}

The gaussian solution is {\it spherically symmetric} about the 
origin of the Cartesian coordinate system, and is {\it time symmetric}.
The initial profile is
\begin{equation}
\phi(r) = A \exp (- (r-r_0)^2/\sigma)
\end{equation}
and is set with the parameters
\begin{itemize}

\item {\tt amplitude} = $A$

\item {\tt radius} = $r_0$

\item {\tt sigma} = $\sigma$

\end{itemize}

% Automatically created from the ccl files by using gmake thorndoc
\include{interface}
\include{param}
\include{schedule}

\end{document}