aboutsummaryrefslogtreecommitdiff
path: root/src/teukwaves.F77
blob: dd3134709a309cef8885d385926a1c49a411d78b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
c Using macro definitions from Einstein
#include "CactusEinstein/Einstein/src/Einstein.h"


/*@@
  @file     teukwaves.F
  @date     Jan 96
  @author   Joan Masso + Malcolm Tobias
  @desc
            Routines for the teukolsky waves initialization.
  @enddesc

@@*/
        
/*@@
  @routine  teukwaves
  @date     Jan 96
  @author   Malcolm Tobias + Joan Masso 
  @desc 
            Generates the analytic solutions of the
            metric components for linearized quadrupolar (teukolsky) waves.
            More changes for cactus port: all 3d arrays are converted
            to point calculations. What a pain!!!

            Three and a half years later....
            Converted to Cactus4.0

  @enddesc
@@*/

      subroutine teukwaves(CCTK_ARGUMENTS)
      implicit none
      
      DECLARE_CCTK_ARGUMENTS

      CCTK_REAL amp,m,ra,pi
      CCTK_REAL wave,wave2,wave3,wave4,wave5,wave6,wave7,wave8
      INTEGER ipacket,iparity
      INTEGER ingoing,outgoing
      CCTK_REAL kappa
c     point values of x.y z,r
      CCTK_REAL xp,yp,zp,rp
      
c     spherical metric
      CCTK_REAL teuk_grr,teuk_grt,teuk_grp,teuk_gtt,teuk_gtp,teuk_gpp
      CCTK_REAL teuk_hrr,teuk_hrt,teuk_hrp,teuk_htt,teuk_htp,teuk_hpp
      
c     special coefficeints needed for teukolsky waves
c     All these were 3d arrays in old versions of Newage,G,etc..
c     uffff....
      CCTK_REAL teuk_tp,teuk_tn
      CCTK_REAL tp2,tn2,fp,fn,fpa,fna,fpb,fnb,fpc,fnc,fpd,fnd,fpe,fne
      CCTK_REAL ca,cb,cc,ck,cl,frr,frt,frp,ftt1,ftt2,ftp,fpp1,fpp2
      CCTK_REAL cadot,cbdot,ccdot,ckdot,cldot
      CCTK_REAL drt,drp,dtt,dtp,dpp,sint,cost,sinp,cosp,tmp

c     from old spheretocart
      CCTK_REAL drx,dry,drz,dtx,dty,dtz,dpx,dpy,dpz
      
      CHARACTER*200 infoline
      INTEGER i,j,k
      INTEGER CCTK_Equals

      DECLARE_CCTK_PARAMETERS
            
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      pi    = 3.14159265358979
      kappa = sqrt(143.0d0/pi)/12288.0d0
      
      if (wavecenter.ne.0.) then
         call CCTK_WARN(0,"Teukwaves: wavecenter must be zero for time symmetry")
      endif
 
c     CACTUS 4.0: all REAL/INTEGER parameter are available as variables and 
c     need not be derived from the database. Nevertheless I will assign 
c     the parameter variables to the variables of CAC3.0, to allow for 
c     easy portation (wavepulse stays wavepulse btw). (GERD)
      
      amp  = amplitude
      m    = mvalue
      wave = wavelength
      ra   = wavecenter
      
c     to be consistent with Evans & Abrahams, rescale the amplitude
c     by kappa, because they use that in the packet and
c     4/3 because they use I not Teuk. F  
      if (CCTK_Equals(packet,'eppley') == 1) then
         ipacket = 1
         call CCTK_INFO('Teukolsky Packet = eppley') 
      elseif (CCTK_Equals(packet,'evans') == 1) then
         ipacket = 2
         call CCTK_INFO('Teukolsky Packet = evans')
c     to be consistent with Evans & Abrahams, rescale the amplitude
c     by kappa, because they use that in the packet and
c     4/3 because they use I not Teuk. F
         amp = amp*(4.0d0/3.0d0)*kappa
      elseif (CCTK_Equals(packet,'square') == 1) then
         ipacket = 3
         call CCTK_INFO('Teukolsky Packet = square')
      end if
      
      write(infoline,'(A13,G12.7)')
     &    ' amplitude = ',amp
      call CCTK_INFO(infoline)
      write(infoline,'(A11,G12.7)')
     &    ' m value = ',m
      call CCTK_INFO(infoline)
      write(infoline,'(A14,G12.7)')
     &    ' wavecenter = ',ra
      call CCTK_INFO(infoline)
      write(infoline,'(A14,G12.7)')
     &    ' wavelength = ',wave
      call CCTK_INFO(infoline)
      
      if (CCTK_Equals(parity,'even') == 1) then    
         iparity = 0
      elseif (CCTK_Equals(parity,'odd') == 1) then 
         iparity = 1
      endif
      
      if(CCTK_Equals(wavesgoing,'in') == 1) then
         ingoing = 1
      endif
      
      if(CCTK_Equals(wavesgoing,'out') == 1) then
         outgoing = 1
      endif
      
      if(CCTK_Equals(wavesgoing,'both') == 1) then
         ingoing  = 1
         outgoing = 1
      endif
      
      if (ipacket.eq.1) then
         if (ingoing.eq.0.or.outgoing.eq.0) then
            call CCTK_WARN(4,'Epply packet is only non-singular at the origin for ingoing-outgoing combination of waves')
         endif
      endif
      
      wave2 = wave*wave
      wave3 = wave2*wave
      wave4 = wave3*wave
      wave5 = wave4*wave
      wave6 = wave5*wave
      wave7 = wave6*wave
      wave8 = wave7*wave
         

c  ****************************************   
c     initial data for teukolsky waves
c  ****************************************
      do k=1,cctk_lsh(3)
         do j=1,cctk_lsh(2)
            do i=1,cctk_lsh(1)
               
               xp = x(i,j,k)
               yp = y(i,j,k)
               zp = z(i,j,k)
               rp = r(i,j,k)
               
               teuk_tp = (cctk_time+rp-ra)
               teuk_tn = (cctk_time-rp+ra)
               
               tp2 = teuk_tp**2
               tn2 = teuk_tn**2

c initialize everything to zero
               fp = 0.0d0
               fpa = 0.0d0
               fpb = 0.0d0
               fpc = 0.0d0
               fpd = 0.0d0
               fpe = 0.0d0

               fn = 0.0d0
               fna = 0.0d0
               fnb = 0.0d0
               fnc = 0.0d0
               fnd = 0.0d0
               fne = 0.0d0
               
c     eppley package --> x exp(-x^2)  
               if (ipacket.eq.1) then
c     to keep the analytic solution valid for the eppley packet:   
                  if (ra.ne.0.and.ingoing.eq.1.and.outgoing.eq.1) then
                     teuk_tn = (cctk_time-rp-ra)
                     tn2 = teuk_tn**2
                  endif
                  
                  if (ingoing.eq.1) then
                     
                     tmp = exp(-tp2)
                     fp = amp * teuk_tp*tmp
                     fpa = amp * (1 - 2*tp2)*tmp
                     fpb = amp * teuk_tp*(4*tp2 - 6)*tmp
                     fpc = amp * (24*tp2 - 8*tp2*tp2 - 6)*tmp
                     fpd = amp * teuk_tp*(60 - 80*tp2 + 16*tp2*tp2)*tmp
                     fpe = amp * (
     &                    (60 - 360*tp2 + 240*tp2*tp2 - 32*tp2*tp2*tp2)*tmp )
                     
                     if (outgoing.eq.0.and.(teuk_tp+wavepulse).le.0) 
     &                    then
                        
                        fp  = 0.0d0
                        fpa = 0.0d0
                        fpb = 0.0d0
                        fpc = 0.0d0
                        fpd = 0.0d0
                        fpe = 0.0d0
                        
                     endif
                     
                  endif
                  
                  if (outgoing.eq.1) then
                     
                     tmp = exp(-tn2)
                     fn = amp * teuk_tn*tmp
                     fna = amp * (1 - 2*tn2)*tmp
                     fnb = amp * teuk_tn*(4*tn2 - 6)*tmp
                     fnc = amp * (24*tn2 - 8*tn2*tn2 -6)*tmp
                     fnd = amp * teuk_tn*(60 - 80*tn2 + 16*tn2*tn2)*tmp
                     fne = amp * (
     &                    (60 - 360*tn2 + 240*tn2*tn2 - 32*tn2*tn2*tn2)*tmp )
                     
                  endif
               endif
               
               
c     evans package  --> w^4(1-x^2/w^2)^6
               if(ipacket.eq.2) then
                  
                  if (ingoing.eq.1) then
                     
                     tmp = 1.0d0 - tp2/wave2
                     
                     if (abs(teuk_tp).lt.wave) then
                        
                        fp  =  amp*wave5*tmp**6
                        fpa =  -12.0d0*amp*wave3*teuk_tp*tmp**5
                        fpb =  -12.0d0*amp*wave3*(
     &                       tmp**5 - 10.0d0*tp2/wave2*tmp**4 )
                        fpc =  120.0d0*amp*wave3*(
     &                       3.0d0*teuk_tp/wave2*tmp**4 
     &                       -8.0d0*teuk_tp*tp2/wave4*tmp**3 )
                        fpd = 360.0d0*amp*wave3*(
     &                       1.0d0/wave2*tmp**4 
     &                       -16.0d0*tp2/wave4*tmp**3
     &                       +16.0d0*tp2*tp2/wave6*tmp**2 )
                        fpe = 2880.0d0*amp*wave3*(
     &                       -5.0d0*teuk_tp/wave4*tmp**3
     &                       +20.0d0*teuk_tp*tp2/wave6*tmp**2
     &                       -8.0d0*teuk_tp*tp2*tp2/wave8*tmp )
                        
                     else
                        fp=0.
                        fpa=0.
                        fpb=0.
                        fpc=0.
                        fpd=0.
                        fpe=0.
                     endif
                     
                  endif
                  
                  if (outgoing.eq.1) then
                     
                     tmp = 1.0d0 - tn2/wave2
                     
                     if (abs(teuk_tn).lt.wave) then
                        
                        fn  =  amp*wave5*tmp**6
                        fna =  -12.0d0*amp*wave3*teuk_tn*tmp**5
                        fnb =  -12.0d0*amp*wave3*(
     &                       tmp**5 - 10.0d0*tn2/wave2*tmp**4 )
                        fnc =  120.0d0*amp*wave3*(
     &                       3.0d0*teuk_tn/wave2*tmp**4 
     &                       -8.0d0*teuk_tn*tn2/wave4*tmp**3 )
                        fnd = 360.0d0*amp*wave3*(
     &                       1.0d0/wave2*tmp**4 
     &                       -16.0d0*tn2/wave4*tmp**3
     &                       +16.0d0*tn2*tn2/wave6*tmp**2 )
                        fne = 2880.0d0*amp*wave3*(
     &                       -5.0d0*teuk_tn/wave4*tmp**3
     &                       +20.0d0*teuk_tn*tn2/wave6*tmp**2
     &                       -8.0d0*teuk_tn*tn2*tn2/wave8*tmp )
                        
                     else
                        fn=0.
                        fna=0.
                        fnb=0.
                        fnc=0.
                        fnd=0.
                        fne=0.
                     endif
                     
                  endif
                  
               endif
      
c     square package --> (1-x^2/w^2)^2
               if(ipacket.eq.3) then 
                  
                  call CCTK_WARN(4,'Need to calculate fpe,fne')
                  call CCTK_WARN(4,'Need conditionals for in out waves')
                  
                  if (abs(teuk_tp).lt.wave) then
                     fp = amp * (1-(tp2/wave2))**2
                     fpa = amp * (-4*teuk_tp)*(1-tp2/wave2)/wave2
                     fpb = amp * (8*tp2/wave4-4*(1-tp2/wave2)/wave2)
                     fpc = amp * 24*teuk_tp/wave4
                     fpd = amp * 24/wave4
                  else
                     fp=0.
                     fpa=0.
                     fpb=0.
                     fpc=0.
                     fpd=0.
                  endif
         
                  if (abs(teuk_tn).lt.wave) then
                     fn = amp * (1-(tn2/wave2))**2
                     fna = amp * (-4*teuk_tn)*(1-tn2/wave2)/wave2
                     fnb = amp * (8*tn2/wave4-4*(1-tn2/wave2)/wave2)
                     fnc = amp * 24*teuk_tn/wave4
                     fnd = amp * 24/wave4  
                  else
                     fn=0.
                     fna=0.
                     fnb=0.
                     fnc=0.
                     fnd=0.
                  endif
               endif
               
c     
c     coefficients
c     
               ca = 3*( (fpb-fnb)/rp**3 -3*(fna+fpa)/rp**4 +3*(fp-fn)/rp**5 )
               cb = -( -(fnc+fpc)/rp**2 +3*(fpb-fnb)/rp**3 -6*(fna+fpa)/rp**4
     &              +6*(fp-fn)/rp**5 ) 
               cc = ( (fpd-fnd)/rp -2*(fnc+fpc)/rp**2 +9*(fpb-fnb)/rp**3
     &              -21*(fna+fpa)/rp**4 +21*(fp-fn)/rp**5 )/4
               ck = (fpb-fnb)/rp**2-3*(fpa+fna)/rp**3+3*(fp-fn)/rp**4
               cl = -(fpc+fnc)/rp+2*(fpb-fnb)/rp**2-3*(fpa+fna)/rp**3+
     &              3*(fp-fn)/rp**4
               
c     If we only have an outgoing wave, we should flip the sign
c     of the above coefficients.  That is because the above coefficients
c     assume an ingoing and outgoing wave packet of the form:
c     wave = ingoing - outgoing.  For a single wave, we want ingoing
c     and outgoing to have the same sign.
               
               if(ingoing.eq.0.and.outgoing.eq.1) then
                  ca=-ca
                  cb=-cb
                  cc=-cc
                  ck=-ck
                  cl=-cl
               endif
               
               sint = (xp**2+yp**2)**0.5/rp
               cost = zp/rp
               sinp = yp/(xp**2+yp**2)**0.5
               cosp = xp/(xp**2+yp**2)**0.5
               
c     mvalue
               if (m.eq.0) then
                  frr = 2-3*sint**2
                  frt = -3*sint*cost
                  frp = 0.
                  ftt1 = 3*sint**2
                  ftt2 = -1.
                  ftp = 0.
                  fpp1 = -ftt1
                  fpp2 = 3*sint**2-1
                  drt = 0.
                  drp = -4*cost*sint
                  dtt = 0.
                  dtp = -sint**2
                  dpp = 0.
               elseif (m.eq.-1) then
                  frr = 2*sint*cost*sinp
                  frt = (cost**2-sint**2)*sinp 
                  frp = cost*cosp 
                  ftt1 = -frr
                  ftt2 = 0.
                  ftp = sint*cosp 
                  fpp1 = -ftt1
                  fpp2 = ftt1
                  drt = -2*cost*sinp
                  drp = -2*(cost**2-sint**2)*cosp
                  dtt = -sint*sinp
                  dtp = -cost*sint*cosp
                  dpp = sint*sinp
               elseif (m.eq.-2) then
                  frr = sint**2*2*sinp*cosp
                  frt = sint*cost*2*sinp*cosp
                  frp = sint*(1-2*sinp**2)
                  ftt1 = (1+cost**2)*2*sinp*cosp
                  ftt2 = -2*sinp*cosp
                  fpp1 = -ftt1
                  fpp2 = cost**2*2*sinp*cosp
                  drt = 8*sint*sinp*cosp
                  drp = 4*sint*cost*(1-2*sinp**2)
                  dtt = -4*cost*sinp*cosp
                  dtp = (2-sint**2)*(2*sinp**2-1)
                  dpp = 2*cost*2*sinp*cosp
               elseif (m.eq.1) then
                  frr = 2*sint*cost*cosp
                  frt = (cost**2-sint**2)*cosp
                  frp = -cost*sinp
                  ftt1 = -2*sint*cost*cosp
                  ftt2 = 0.
                  ftp = -sint*sinp
                  fpp1 = -ftt1
                  fpp2 = ftt1
                  drt = -2*cost*cosp
                  drp = 2*(cost**2-sint**2)*sinp
                  dtt = -sint*cosp
                  dtp = cost*sint*sinp
                  dpp = sint*cosp
               elseif (m.eq.2) then
                  frr = sint**2*(1-2*sinp**2)
                  frt = sint*cost*(1-2*sinp**2)
                  frp = -sint*2*sinp*cosp
                  ftt1 = (1+cost**2)*(1-2*sinp**2)
                  ftt2 = (2*sinp**2-1)
                  ftp = cost*2*sinp*cosp
                  fpp1 = -ftt1
                  fpp2 = cost**2*(1-2*sinp**2)
                  drt = 4*sint*(1-2*sinp**2)
                  drp = -4*sint*cost*2*sinp*cosp
                  dtt = -2*cost*(1-2*sinp**2)
                  dtp = (2-sint**2)*2*sinp*cosp
                  dpp = 2*cost*(1-2*sinp**2)
               else
                  call CCTK_WARN(0,'m should be one of -2,-1,0,1,2')
               endif
               
c     parity
               if (iparity.eq.0) then    
                  teuk_grr = 1 + ca*frr
                  teuk_grt = cb*frt*rp
                  teuk_grp = cb*frp*(xp**2+yp**2)**0.5
                  teuk_gtt = rp**2*(1 + cc*ftt1 + ca*ftt2)
                  teuk_gtp = (ca - 2*cc)*ftp*rp*(xp**2+yp**2)**0.5
                  teuk_gpp = (xp**2+yp**2)*(1 + cc*fpp1 + ca*fpp2)
               else
                  teuk_grr = 1.
                  teuk_grt = ck*drt*rp
                  teuk_grp = ck*drp*rp*sint
                  teuk_gtt = (1+cl*dtt)*rp**2
                  teuk_gtp = cl*dtp*rp**2*sint
                  teuk_gpp = (1+cl*dpp)*rp**2*sint**2
               endif
               
c     Finally, convert the spherical components to cartesian
               
c     define derivatives drx = (dr/dx)               
               drx = xp/rp
               dry = yp/rp
               drz = zp/rp
      
               dtx = xp*zp/(rp**2*sqrt(xp**2+yp**2))
               dty = yp*zp/(rp**2*sqrt(xp**2+yp**2))
               dtz = (zp**2/rp**2-1)/sqrt(xp**2+yp**2)
               
               dpx = -yp/(xp**2+yp**2)
               dpy = xp/(xp**2+yp**2)
               dpz = 0.
               
c     cartesian g
               gxx(i,j,k) = drx**2*teuk_grr+2.*drx*dtx*teuk_grt
     &              +2.*drx*dpx*teuk_grp+dtx**2*teuk_gtt
     &              +2.*dtx*dpx*teuk_gtp+dpx**2*teuk_gpp
               
               gyy(i,j,k) = dry**2*teuk_grr+2.*dry*dty*teuk_grt
     &              +2.*dry*dpy*teuk_grp+dty**2*teuk_gtt
     &              +2.*dty*dpy*teuk_gtp+dpy**2*teuk_gpp
 
               gzz(i,j,k) = drz**2*teuk_grr+2.*drz*dtz*teuk_grt
     &              +2.*drz*dpz*teuk_grp+dtz**2*teuk_gtt
     &              +2.*dtz*dpz*teuk_gtp+dpz**2*teuk_gpp
               
               gxy(i,j,k) = drx*dry*teuk_grr+(drx*dty+dtx*dry)*teuk_grt
     &              +(drx*dpy+dpx*dry)*teuk_grp
     &              +dtx*dty*teuk_gtt+(dtx*dpy+dpx*dty)*teuk_gtp+
     &              dpx*dpy*teuk_gpp
               
               gxz(i,j,k) = drx*drz*teuk_grr+(drx*dtz+dtx*drz)*teuk_grt
     &              +(drx*dpz+dpx*drz)*teuk_grp
     &              +dtx*dtz*teuk_gtt+(dtx*dpz+dpx*dtz)*teuk_gtp+
     &              dpx*dpz*teuk_gpp
               
               gyz(i,j,k) = dry*drz*teuk_grr+(dry*dtz+dty*drz)*teuk_grt
     &              +(dry*dpz+dpy*drz)*teuk_grp
     &              +dty*dtz*teuk_gtt+(dty*dpz+dpy*dtz)*teuk_gtp+
     &              dpy*dpz*teuk_gpp
                


c     for the ext. curv. well need...
               cadot = 3*( (fpc-fnc)/rp**3 -3*(fnb+fpb)/rp**4 
     &              +3*(fpa-fna)/rp**5 )
               cbdot = -( -(fnd+fpd)/rp**2 +3*(fpc-fnc)/rp**3 
     &              -6*(fnb+fpb)/rp**4
     &              +6*(fpa-fna)/rp**5 ) 
               ccdot = ( (fpe-fne)/rp -2*(fnd+fpd)/rp**2 +9*(fpc-fnc)/rp**3
     &              -21*(fnb+fpb)/rp**4 +21*(fpa-fna)/rp**5 )/4
               ckdot = (fpc-fnc)/rp**2-3*(fpb+fnb)/rp**3+3*(fpa-fna)/rp**4
               cldot = -(fpd+fnd)/rp+2*(fpc-fnc)/rp**2-3*(fpb+fnb)/rp**3+
     &              3*(fpa-fna)/rp**4
               
c     parity
               if (iparity.eq.0) then    
                  teuk_hrr = -0.5*(cadot*frr)
                  teuk_hrt = -0.5*(cbdot*frt*rp)
                  teuk_hrp = -0.5*(cbdot*frp*(xp**2+yp**2)**0.5)
                  teuk_htt = -0.5*(rp**2*(ccdot*ftt1 + cadot*ftt2))
                  teuk_htp = 
     &                 -0.5*((cadot - 2*ccdot)*ftp*rp*(xp**2+yp**2)**0.5)
                  teuk_hpp = -0.5*((xp**2+yp**2)*(ccdot*fpp1 + cadot*fpp2))
               else
                  teuk_hrr = 0.
                  teuk_hrt = -0.5*(ckdot*drt*rp)
                  teuk_hrp = -0.5*(ckdot*drp*rp*sint)
                  teuk_htt = -0.5*((cldot*dtt)*rp**2)
                  teuk_htp = -0.5*(cldot*dtp*rp**2*sint)
                  teuk_hpp = -0.5*((cldot*dpp)*rp**2*sint**2)
               endif
               
c     time symmetry
               kxx(i,j,k) = drx**2*teuk_hrr+2.*drx*dtx*teuk_hrt
     &              +2.*drx*dpx*teuk_hrp+dtx**2*teuk_htt
     &              +2.*dtx*dpx*teuk_htp+dpx**2*teuk_hpp
               
               kyy(i,j,k) = dry**2*teuk_hrr+2.*dry*dty*teuk_hrt
     &              +2.*dry*dpy*teuk_hrp+dty**2*teuk_htt
     &              +2.*dty*dpy*teuk_htp+dpy**2*teuk_hpp
               
               kzz(i,j,k) = drz**2*teuk_hrr+2.*drz*dtz*teuk_hrt
     &              +2.*drz*dpz*teuk_hrp+dtz**2*teuk_htt
     &              +2.*dtz*dpz*teuk_htp+dpz**2*teuk_hpp
               
               kxy(i,j,k) = drx*dry*teuk_hrr+(drx*dty+dtx*dry)*teuk_hrt
     &              +(drx*dpy+dpx*dry)*teuk_hrp
     &              +dtx*dty*teuk_htt+(dtx*dpy+dpx*dty)*teuk_htp+
     &              dpx*dpy*teuk_hpp
               
               kxz(i,j,k) = drx*drz*teuk_hrr+(drx*dtz+dtx*drz)*teuk_hrt
     &              +(drx*dpz+dpx*drz)*teuk_hrp
     &              +dtx*dtz*teuk_htt+(dtx*dpz+dpx*dtz)*teuk_htp+
     &              dpx*dpz*teuk_hpp
               
               kyz(i,j,k) = dry*drz*teuk_hrr+(dry*dtz+dty*drz)*teuk_hrt
     &              +(dry*dpz+dpy*drz)*teuk_hrp
     &              +dty*dtz*teuk_htt+(dty*dpz+dpy*dtz)*teuk_htp+
     &              dpy*dpz*teuk_hpp
               
               
               
            enddo
         enddo
      enddo

c     initialize the conformal factor
c   Check if we should create and store conformal factor stuff */
      if (CCTK_EQUALS(metric_type, "static conformal")) then 

         conformal_state = 1

         if(CCTK_EQUALS(conformal_storage,"factor+derivs")) then

            conformal_state = 2;

         else if(CCTK_EQUALS(conformal_storage,"factor+derivs+2nd derivs")) then
            conformal_state = 3;
         end if

         do k=1,cctk_lsh(3)
            do j=1,cctk_lsh(2)
               do i=1,cctk_lsh(1)		 

                  psi(i,j,k)   = 1d0

                  if(conformal_state .gt. 1) then
                     psix(i,j,k)  = 0d0
                     psiy(i,j,k)  = 0d0
                     psiz(i,j,k)  = 0d0    
                  endif
                  if(conformal_state .gt. 2) then
                     psixy(i,j,k) = 0d0
                     psixz(i,j,k) = 0d0
                     psiyz(i,j,k) = 0d0  
                     psixx(i,j,k) = 0d0
                     psiyy(i,j,k) = 0d0
                     psizz(i,j,k) = 0d0
                  endif
               end do
            end do
         end do
      end if
      
      return
      end