aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 8386fc319d6b2604aba312ae0753b2e23a8b32d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Thorn documentation template
\documentclass{article}
\begin{document}

\title{IDLinearWaves}
\author{Gabrielle Allen, Tom Goodale, Gerd Lanfermann, Joan Masso, \\
Mark Miller, Malcolm Tobias, Paul Walker}
\date{1997-present}
\maketitle

\abstract{Provides gravitational wave solutions to the linearized Einstein equations}

\section{Purpose}

There are two different linearized initial data sets provided:

\begin{enumerate}
\item	plane waves \\
Plane waves cane be specified to be travelling in an arbitrary direction.
The form of the wave packet is: 
\begin{equation}
 A*exp\left[-(kp_ix^i-\omega_p (time-ra))^2\right]
 cos(k_ix^i-\omega \ time),
\end{equation}
where:\\
A = amplitude of the wave  \\
k  = the wave number of the sine wave \\
$\omega$ = the frequency of the sine wave  \\
kp = the wave number of the gaussian modulating the sine wave \\
$\omega_p$ = the frequency of the gaussian \\
ra = the initial position of the packet(s). \\


\item	Teukolsky waves \\
Teukolsky waves are quadrupole wave solutions to the linearized
Einstein equations.  For a full description, see: PRD 26:745 (1982).


\end{enumerate}

\section{Comments}
The extrinsic curvature is initialized assuming the initial lapse is one.


% Automatically created from the ccl files 
% Do not worry for now.
\include{interface}
\include{param}
\include{schedule}

\end{document}