aboutsummaryrefslogtreecommitdiff
path: root/src/setupbrilldata3D.F
blob: 5a20e21aae79e2a4c0fa151b27a978eb5a756d13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*@@
  @file      setupbrilldata3D.F
  @date      October 1998
  @author    Miguel Alcubierre
  @desc
             Set up non-axisymmetric Brill data for elliptic solve.
  @enddesc
  @version   $Header$
@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

      subroutine setupbrilldata3D(CCTK_ARGUMENTS)

c     Set up 3D Brill data for elliptic solve.  The elliptic
c     equation we need to solve is:
c
c     __
c     \/  psi  -  psi R  /  8  =  0
c       c              c
c
c     where:
c     __
c     \/  =  Laplacian operator for conformal metric.
c       c
c
c     R   =  Ricci scalar for conformal metric. 
c      c
c
c     The Ricci scalar for the conformal metric turns out to be:
c
c               /  -2q    2      2             -2            2       2      \
c     R  =  - 2 | e    ( d q  + d   q )  +  rho   ( 3 (d   q)  +  2 d   q ) |
c      c        \         z      rho                    phi          phi    /


      implicit none

      DECLARE_CCTK_ARGUMENTS
      DECLARE_CCTK_PARAMETERS

      integer CCTK_Equals
      integer i,j,k
      integer nx,ny,nz
      integer ierr

      integer, dimension(3) :: sym

      CCTK_REAL x1,y1,z1,rho1,rho2
      CCTK_REAL phi,phif,e2q
      CCTK_REAL brillq,rhofudge,eps
      CCTK_REAL zero,one,two,three

c     Set up grid size.

      nx = cctk_lsh(1)
      ny = cctk_lsh(2)
      nz = cctk_lsh(3)

c     Define numbers

      zero  = 0.0D0
      one   = 1.0D0
      two   = 2.0D0
      three = 3.0D0

c     Parameters.

      rhofudge = brill_rhofudge

c     Epsilon for finite differencing.

      eps = cctk_delta_space(1)

c     Initialize psi.

      brillpsi = one

c     Set up conformal metric.

      if (CCTK_EQUALS(metric_type,"static conformal")) then
      
         conformal_state = 1
         do k=1,nz
            do j=1,ny
               do i=1,nx
                  psi(i,j,k) = one
                  if (CCTK_Equals(conformal_storage,"factor").ne.1) then
c     (.not. CCTK_EQUALS gives a parse error, I have no idea why)
                     psix(i,j,k) = zero
                     psiy(i,j,k) = zero
                     psiz(i,j,k) = zero
                     conformal_state = 2
                  end if
                  if (CCTK_EQUALS(conformal_storage,"factor+derivs+2nd derivs")) then
                     psixx(i,j,k) = zero
                     psiyy(i,j,k) = zero
                     psizz(i,j,k) = zero
                     psixy(i,j,k) = zero
                     psixz(i,j,k) = zero
                     psiyz(i,j,k) = zero
                     conformal_state=3
                  end if
               end do
            end do
         end do

      else

c     conformal_state = 0 -- metric_type "physical" does not allocate storage for conformal_state!

      end if
         

      do k=1,nz
         do j=1,ny
            do i=1,nx

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1**2 + y1**2
               rho1 = dsqrt(rho2)

               phi = phif(x1,y1)

               e2q  = dexp(two*brillq(rho1,z1,phi))

               if (rho1.gt.rhofudge) then
                  gxx(i,j,k) = e2q + (one - e2q)*y1**2/rho2
                  gyy(i,j,k) = e2q + (one - e2q)*x1**2/rho2
                  gzz(i,j,k) = e2q
                  gxy(i,j,k) = - (one - e2q)*x1*y1/rho2
               else
                  gxx(i,j,k) = one 
                  gyy(i,j,k) = one 
                  gzz(i,j,k) = one
                  gxy(i,j,k) = zero
               end if

            end do
         end do
      end do

      gxz = zero
      gyz = zero

c     Define the symmetries for the brill GFs.

      sym(1) = 1
      sym(2) = 1
      sym(3) = 1

      call SetCartSymVN(ierr,cctkGH,sym,'idbrilldata::brillMlinear')
      call SetCartSymVN(ierr,cctkGH,sym,'idbrilldata::brillNsource')

c     Set up coefficient arrays for elliptic solve.
c     Notice that the Cactus conventions are:
c     __
c     \/ psi +  Mlinear*psi  +  Nsource  =  0

      do k=1,nz
         do j=1,ny
            do i=1,nx

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1**2 + y1**2
               rho1 = dsqrt(rho2)

               phi  = phif(x1,y1)

               e2q = dexp(two*brillq(rho1,z1,phi))

c              Find M using centered differences over a small
c              interval.

               if (rho1.gt.rhofudge) then

                  brillMlinear(i,j,k) = 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + brillq(rho1+eps,z1,phi) 
     .                 + brillq(rho1-eps,z1,phi) 
     .                 - 4.0D0*brillq(rho1,z1,phi))
     .                 / eps**2

               else

                  brillMlinear(i,j,k) = 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + two*brillq(eps,z1,phi) 
     .                 - two*brillq(rho1,z1,phi))
     .                 / eps**2

               end if

c              Here I assume that for very small rho, the
c              phi derivatives are essentially zero.  This
c              must always be true otherwise the function
c              is not regular on the axis.

               if (rho1.gt.rhofudge) then
                  brillMlinear(i,j,k) = brillMlinear(i,j,k) + 0.25D0/rho2
     .               *(three*0.25D0*(brillq(rho1,z1,phi+eps)
     .               - brillq(rho1,z1,phi-eps))**2
     .               + two*(brillq(rho1,z1,phi+eps)
     .               - two*brillq(rho1,z1,phi)
     .               + brillq(rho1,z1,phi-eps)))/eps**2
               end if

            end do
         end do
      end do

c     Set coefficient Nsource = 0.

      brillNsource = zero

c     Synchronization and boundaries.

      call CCTK_SyncGroup(ierr,cctkGH,'idbrilldata::brillelliptic')
      call CartSymGN(ierr,cctkGH,'idbrilldata::brillelliptic')

      return
      end