aboutsummaryrefslogtreecommitdiff
path: root/src/setupbrilldata3D.F
blob: 719528b975d086dd440ec5cb515ae4273ad49e69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "cctk.h" 
#include "cctk_parameters.h"
#include "cctk_arguments.h"
#include "../../../CactusEinstein/Einstein/src/Einstein.h"

      subroutine setupbrilldata3D(CCTK_FARGUMENTS)

c     Author: Miguel Alcubierre, October 1998.
c
c     Set up 3D Brill data for elliptic solve.  The elliptic
c     equation we need to solve is:
c
c     __
c     \/  psi  =  psi R  /  8
c       c              c
c
c     where:
c     __
c     \/  =  Laplacian operator for conformal metric.
c       c
c
c     R   =  Ricci scalar for conformal metric. 
c      c
c
c     The Ricci scalar for the conformal metric turns out to be:
c
c             /  -2q    2      2             -2            2       2      \
c     R  =  2 | e    ( d q  + d   q )  +  rho   ( 3 (d   q)  +  2 d   q ) |
c      c      \         z      rho                    phi          phi    /


      implicit none

      DECLARE_CCTK_FARGUMENTS
      DECLARE_CCTK_PARAMETERS

      integer CCTK_Equals
      integer i,j,k
      integer nx,ny,nz

      CCTK_REAL x1,y1,z1,rho1,rho2
      CCTK_REAL phi,phif,e2q
      CCTK_REAL brillq,rhofudge,eps
      CCTK_REAL zero,one,two,three

c     Set up grid size.

      nx = cctk_lsh(1)
      ny = cctk_lsh(2)
      nz = cctk_lsh(3)

c     Define numbers

      zero  = 0.0D0
      one   = 1.0D0
      two   = 2.0D0
      three = 3.0D0

c     Parameters.

      rhofudge = brill_rhofudge
      eps      = brill_eps

c     Initialize psi.

      brillpsi = one

c     Set up conformal metric.

      psi = one

      do k=1,nz
         do j=1,ny
            do i=1,nx

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1**2 + y1**2
               rho1 = dsqrt(rho2)

               phi = phif(x1,y1)

               e2q  = dexp(two*brillq(rho1,z1,phi))

               if (rho1.gt.rhofudge) then
                  gxx(i,j,k) = e2q + (one - e2q)*y1**2/rho2
                  gyy(i,j,k) = e2q + (one - e2q)*x1**2/rho2
                  gzz(i,j,k) = e2q
                  gxy(i,j,k) = - (one - e2q)*x1*y1/rho2
               else
                  gxx(i,j,k) = one 
                  gyy(i,j,k) = one 
                  gzz(i,j,k) = one
                  gxy(i,j,k) = zero
               end if

            end do
         end do
      end do

      gxz = zero
      gyz = zero

c     Set up coefficient Mlinear = - (1/8) Rc.

      do k=1,nz
         do j=1,ny
            do i=1,nx

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1**2 + y1**2
               rho1 = dsqrt(rho2)

               phi  = phif(x1,y1)

               e2q = dexp(two*brillq(rho1,z1,phi))

c              Find M using centered differences over a small
c              interval.

               if (rho1.gt.rhofudge) then
                  Mlinear(i,j,k) = - 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + brillq(rho1+eps,z1,phi) 
     .                 + brillq(rho1-eps,z1,phi) 
     .                 - 4.0D0*brillq(rho1,z1,phi))
     .                 / eps**2
               else
                  Mlinear(i,j,k) = - 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + two*brillq(eps,z1,phi) 
     .                 - two*brillq(rho1,z1,phi))
     .                 / eps**2
               end if

c              Here I assume that for very small rho, the
c              phi derivatives are essentially zero.  This
c              must always be true otherwise the function
c              is not regular on the axis.

               if (rho1.gt.rhofudge) then
                  Mlinear(i,j,k) = Mlinear(i,j,k) - 0.25D0/rho2
     .               *(three*0.25D0*(brillq(rho1,z1,phi+eps)
     .               - brillq(rho1,z1,phi-eps))**2
     .               + two*(brillq(rho1,z1,phi+eps)
     .               - two*brillq(rho1,z1,phi)
     .               + brillq(rho1,z1,phi-eps)))/eps**2
               end if

            end do
         end do
      end do

c     Set coefficient Nsource = 0.

      Nsource = zero

      return
      end