aboutsummaryrefslogtreecommitdiff
path: root/src/setupbrilldata3D.F
blob: b37c28c292e423d905c109f9da7c715642fe2955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*@@
  @file      setupbrilldata3D.F
  @date      October 1998
  @author    Miguel Alcubierre
  @desc
             Set up non-axisymmetric Brill data for elliptic solve.
  @enddesc
  @version   $Header$
@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"

      subroutine setupbrilldata3D(CCTK_ARGUMENTS)

c     Set up 3D Brill data for elliptic solve.  The elliptic
c     equation we need to solve is:
c
c     __
c     \/  psi  -  psi R  /  8  =  0
c       c              c
c
c     where:
c     __
c     \/  =  Laplacian operator for conformal metric.
c       c
c
c     R   =  Ricci scalar for conformal metric. 
c      c
c
c     The Ricci scalar for the conformal metric turns out to be:
c
c               /  -2q    2      2             -2            2       2      \
c     R  =  - 2 | e    ( d q  + d   q )  +  rho   ( 3 (d   q)  +  2 d   q ) |
c      c        \         z      rho                    phi          phi    /


      implicit none

      DECLARE_CCTK_ARGUMENTS
      DECLARE_CCTK_PARAMETERS
      DECLARE_CCTK_FUNCTIONS

      integer i,j,k
      integer ierr

      CCTK_REAL x1,y1,z1,rho1,rho2
      CCTK_REAL phi,phif,e2q
      CCTK_REAL brillq,eps
      CCTK_REAL zero,one,two,three

c     Define numbers

      zero  = 0.0D0
      one   = 1.0D0
      two   = 2.0D0
      three = 3.0D0

c     Epsilon for finite differencing.

      eps = cctk_delta_space(1)

      do k=1,cctk_lsh(3)
         do j=1,cctk_lsh(2)
            do i=1,cctk_lsh(1)

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1*x1 + y1*y1
               rho1 = sqrt(rho2)
               phi = phif(x1,y1)

               e2q  = exp(two*brillq(rho1,z1,phi))

c              Initialise psi

               brillpsi(i,j,k) = one

c              Set up metric and coefficient arrays for elliptic solve.
c              Notice that the Cactus conventions are:
c              __
c              \/ psi +  Mlinear*psi  +  Nsource  =  0

c              Find M using centered differences over a small
c              interval.

c              Here we assume that for very small rho, the
c              phi derivatives are essentially zero.  This
c              must always be true otherwise the function
c              is not regular on the axis.

               if (rho1.gt.rhofudge) then

                  gxx(i,j,k) = e2q + (one - e2q)*y1*y1/rho2
                  gyy(i,j,k) = e2q + (one - e2q)*x1*x1/rho2
                  gzz(i,j,k) = e2q
                  gxy(i,j,k) = - (one - e2q)*x1*y1/rho2

                  brillMlinear(i,j,k) = 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + brillq(rho1+eps,z1,phi) 
     .                 + brillq(rho1-eps,z1,phi) 
     .                 - 4.0D0*brillq(rho1,z1,phi))
     .                 / eps**2

                  brillMlinear(i,j,k) = brillMlinear(i,j,k) + 0.25D0/rho2
     .               *(three*0.25D0*(brillq(rho1,z1,phi+eps)
     .               - brillq(rho1,z1,phi-eps))**2
     .               + two*(brillq(rho1,z1,phi+eps)
     .               - two*brillq(rho1,z1,phi)
     .               + brillq(rho1,z1,phi-eps)))/eps**2

               else

                  gxx(i,j,k) = one 
                  gyy(i,j,k) = one 
                  gzz(i,j,k) = one
                  gxy(i,j,k) = zero

                  brillMlinear(i,j,k) = 0.25D0/e2q
     .                 *(brillq(rho1,z1+eps,phi) 
     .                 + brillq(rho1,z1-eps,phi) 
     .                 + two*brillq(eps,z1,phi) 
     .                 - two*brillq(rho1,z1,phi))
     .                 / eps**2

               end if

               gxz(i,j,k) = zero
               gyz(i,j,k) = zero

c              Set coefficient Nsource = 0
               brillNsource(i,j,k) = zero

            end do
         end do
      end do


c     Synchronization and boundaries.

c      call CCTK_SyncGroup(ierr,cctkGH,'idbrilldata::brillelliptic')
c      call CartSymGN(ierr,cctkGH,'idbrilldata::brillelliptic')

      return
      end