aboutsummaryrefslogtreecommitdiff
path: root/src/finishbrilldata.F
blob: bd13c79bf219039cd4ca2caa54e689f36ecd4d1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*@@
  @file      finishbrilldata.F
  @date
  @author    Carsten Gundlach (Cactus 4, Miguel Alcubierre)
  @desc
             Reconstruct metric from conformal factor.
  @enddesc
  @version   $Header$
@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

      subroutine IDBrillData_Finish(CCTK_ARGUMENTS)

      implicit none

      DECLARE_CCTK_ARGUMENTS
      DECLARE_CCTK_PARAMETERS
      DECLARE_CCTK_FUNCTIONS

      integer i,j,k

      CCTK_REAL x1,y1,z1,rho1,rho2
      CCTK_REAL phi,psi4,e2q
      CCTK_REAL zero,one

      CCTK_REAL brillq,phif

c     Numbers.

      zero = 0.0D0
      one  = 1.0D0

c     Replace flat metric left over from elliptic solve by
c     Brill metric calculated from q and Psi.

      do k=1,cctk_lsh(3)
         do j=1,cctk_lsh(2)
            do i=1,cctk_lsh(1)

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1*x1 + y1*y1
               rho1 = dsqrt(rho2)

               phi = phif(x1,y1)

               e2q  = dexp(2.d0*brillq(rho1,z1,phi))

c              Fudge division by rho^2 on axis. (Physically, y^/rho^2,
c              x^2/rho^2 and xy/rho^2 are of course regular.)
c              Transform Brills form of the physical metric to Cartesian
c              coordinates via
c
c              e^2q (drho^2 + dz^2) + rho^2 dphi^2 =
c              e^2q (dx^2 + dy^2 + dz^2) + (1-e^2q) (xdy-ydx)^2/rho^2
c
c              The individual coefficients can be read off as

               if (rho1.gt.rhofudge) then

                  gxx(i,j,k) = (e2q + (one - e2q)*y1*y1/rho2)
                  gyy(i,j,k) = (e2q + (one - e2q)*x1*x1/rho2)
                  gzz(i,j,k) = e2q
                  gxy(i,j,k) = - (one - e2q)*x1*y1/rho2

               else

c                 This fudge assumes that q = O(rho^2) near the axis. Which
c                 it should be, or the data will be singular.

                  gxx(i,j,k) = zero
                  gyy(i,j,k) = zero
                  gzz(i,j,k) = zero
                  gxy(i,j,k) = zero

               end if

               gxz(i,j,k) = zero
               gyz(i,j,k) = zero

               kxx(i,j,k) = zero
               kyy(i,j,k) = zero
               kzz(i,j,k) = zero
               kxy(i,j,k) = zero
               kxz(i,j,k) = zero
               kyz(i,j,k) = zero

            end do
         end do
      end do

      if (CCTK_EQUALS(metric_type,"static conformal")) then

         conformal_state = 1

         do k=1,cctk_lsh(3)
            do j=1,cctk_lsh(2)
               do i=1,cctk_lsh(1)

                  psi(i,j,k) = brillpsi(i,j,k)
                  
               end do
            end do
         end do

      else

         conformal_state = 0

         do k=1,cctk_lsh(3)
            do j=1,cctk_lsh(2)
               do i=1,cctk_lsh(1)

                  psi4  = brillpsi(i,j,k)**4

                  gxx(i,j,k) = psi4*gxx(i,j,k)
                  gyy(i,j,k) = psi4*gyy(i,j,k)
                  gzz(i,j,k) = psi4*gzz(i,j,k)
                  gxy(i,j,k) = psi4*gxy(i,j,k)
                  
               end do
            end do
         end do

      end if

      return
      end