aboutsummaryrefslogtreecommitdiff
path: root/src/finishbrilldata.F
blob: 467c28d5d129dfa009d47c809455332740b99e61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*@@
  @file      finishbrilldata.F
  @date
  @author    Carsten Gundlach (Cactus 4, Miguel Alcubierre)
  @desc
             Reconstruct metric from conformal factor.
  @enddesc
  @version   $Header$
@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

      subroutine IDBrillData_Finish(CCTK_ARGUMENTS)

      implicit none

      DECLARE_CCTK_ARGUMENTS
      DECLARE_CCTK_PARAMETERS
      DECLARE_CCTK_FUNCTIONS

      integer i,j,k
      integer nx,ny,nz

      CCTK_REAL x1,y1,z1,rho1,rho2
      CCTK_REAL phi,psi4,e2q,rhofudge
      CCTK_REAL zero,one

      CCTK_REAL brillq,phif

c     Numbers.

      zero = 0.0D0
      one  = 1.0D0

c     Set up grid size.

      nx = cctk_lsh(1)
      ny = cctk_lsh(2)
      nz = cctk_lsh(3)

c     Parameters.

      rhofudge = brill_rhofudge
      
c     Replace flat metric left over from elliptic solve by
c     Brill metric calculated from q and Psi.

      do k=1,nz
         do j=1,ny
            do i=1,nx

               x1 = x(i,j,k)
               y1 = y(i,j,k)
               z1 = z(i,j,k)

               rho2 = x1*x1 + y1*y1
               rho1 = dsqrt(rho2)

               phi = phif(x1,y1)

               e2q  = dexp(2.d0*brillq(rho1,z1,phi))

c              Fudge division by rho^2 on axis. (Physically, y^/rho^2,
c              x^2/rho^2 and xy/rho^2 are of course regular.)
c              Transform Brills form of the physical metric to Cartesian
c              coordinates via
c
c              e^2q (drho^2 + dz^2) + rho^2 dphi^2 =
c              e^2q (dx^2 + dy^2 + dz^2) + (1-e^2q) (xdy-ydx)^2/rho^2
c
c              The individual coefficients can be read off as

               if (rho1.gt.rhofudge) then

                  gxx(i,j,k) = (e2q + (one - e2q)*y1*y1/rho2)
                  gyy(i,j,k) = (e2q + (one - e2q)*x1*x1/rho2)
                  gzz(i,j,k) = e2q
                  gxy(i,j,k) = - (one - e2q)*x1*y1/rho2

               else

c                 This fudge assumes that q = O(rho^2) near the axis. Which
c                 it should be, or the data will be singular.

                  gxx(i,j,k) = 0.0d0
                  gyy(i,j,k) = 0.0d0
                  gzz(i,j,k) = 0.0d0
                  gxy(i,j,k) = 0.0d0

               end if

            end do
         end do
      end do

      if (CCTK_EQUALS(metric_type,"static conformal")) then

         conformal_state = 1

         do k=1,nz
            do j=1,ny
               do i=1,nx

                  psi(i,j,k) = brillpsi(i,j,k)
                  
               end do
            end do
         end do

      else

         conformal_state = 0

         do k=1,nz
            do j=1,ny
               do i=1,nx

                  psi4  = brillpsi(i,j,k)**4

                  gxx(i,j,k) = psi4*gxx(i,j,k)
                  gyy(i,j,k) = psi4*gyy(i,j,k)
                  gzz(i,j,k) = psi4*gzz(i,j,k)
                  gxy(i,j,k) = psi4*gxy(i,j,k)
                  
               end do
            end do
         end do

      end if

c     In any case,

      gxz = zero
      gyz = zero

c     Vanishing extrinsic curvature completes the Cauchy data.

      kxx = zero
      kyy = zero
      kzz = zero
      kxy = zero
      kxz = zero
      kyz = zero

      return
      end