aboutsummaryrefslogtreecommitdiff
path: root/src/brillq.F
blob: ad366c25b28337813e1d8a92e209e19aaa289311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*@@
  @file      brilldata.F
  @date
  @author    Carsten Gundlach, Miguel Alcubierre.
  @desc
             Construct Brill wave q function.
  @enddesc
  @version   $Header$
@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"

      function brillq(rho,z,phi)

c     Calculates the function q that appear in the conformal
c     metric for Brill waves:
c
c     ds^2  =  psi^4 ( e^(2q) (drho^2 + dz^2) + rho^2 dphi^2 )
c
c     There are three different choices for the form of q depending
c     on the value of the parameter "brill_q":
c
c     brill_q = 0:
c                                           2
c                           2+b  - (rho-rho0)      2     2
c                  q = a rho    e            (z/sz)  /  r
c
c
c     brill_q = 1:  (includes Eppleys form as special case)
c
c
c                                  b               2    2      2  c/2
c                  q = a (rho/srho)  /  { 1 + [ ( r - r0 ) / sr  ]    }
c
c
c     brill_q = 2:  (includes Holz et al form as special case)
c
c                                            2    2      2  c/2 
c                                  b  - [ ( r - r0 ) / sr  ]
c                  q = a (rho/srho)  e
c
c
c     If we want 3D initial data, the function q is multiplied by an
c     additional factor:
c
c                           m    2                              m
c         q -> q [ 1 + d rho  cos  (n (phi)+phi0 ) / ( 1 + e rho ) ]

      implicit none

      DECLARE_CCTK_PARAMETERS

      logical firstcall

      integer qtype
      integer b,c

      CCTK_REAL brillq,rho,z,phi
      CCTK_REAL a,r0,sr,rho0,srho,sz
      CCTK_REAL d,e,m,n,phi0

      data firstcall /.true./

      save firstcall,qtype
      save a,b,c,r0,sr,rho0,srho,sz
      save d,e,m,n,phi0

c     Get parameters at first call.

      if (firstcall) then

         qtype = brill_q

         a = brill_a
         b = brill_b
         c = brill_c

         r0   = brill_r0
         sr   = brill_sr
         rho0 = brill_rho0
         srho = brill_srho
         sz   = brill_sz

         if (axisym.eq.0) then
            d = brill_d
            e = brill_e
            m = brill_m
            n = brill_n
            phi0 = brill_phi0
         end if

         firstcall = .false.

      end if

c     Calculate q(rho,z) from a choice of forms.

c     brill_q = 0.

      if (qtype.eq.0) then

         brillq = a*dabs(rho)**(2 + b)
     .          / dexp((rho - rho0)**2)/(rho**2 + z**2)

         if (sz.ne.0.0D0) then
            brillq = brillq/dexp((z/sz)**2)
         end if

      else if (qtype.eq.1) then

c     brill_q = 1.  This includes Eppleys choice of q. 
c     But note that q(Eppley) = 2q(Cactus).

         brillq = a*(rho/srho)**b 
     .          / ( 1.0D0 + ((rho**2 + z**2 - r0**2)/sr**2)**(c/2) )

      else if (qtype.eq.2) then

c     brill_q = 2.   This includes my (Carstens) notion of what a
c     smooth "pure quadrupole" q should be, plus the choice of
c     Holz et al.

         brillq = a*(rho/srho)**b
     .          / dexp(((rho**2 + z**2 - r0**2)/sr**2)**(c/2))

      else

c     Unknown type for q function.

         call CCTK_WARN(0,"Unknown type of Brill function q")

      end if

c     If desired, multiply with a phi dependent factor.

      if (axisym.eq.0) then
         brillq = brillq*(1.0D0 + d*rho**m*cos(n*(phi-phi0))**2
     .          / (1.0D0 + e*rho**m))
      end if

      return
      end