aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 35e876b5a3ac96e4dda9f22f438111a2c5aa5ebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a 
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/latex/cactus}

\begin{document}

\title{IDBrillData}
\author{Carsten Gundlach, Gabrielle Allen}
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

\begin{abstract}
This thorn creates time symmetric initial data for Brill
wave spacetimes.  It can create both axisymmetric data (in a 3D
cartesian grid), as well as data with an angular dependency.
\end{abstract}

\section{Purpose}

The purpose of this thorn is to create (time symmetric) initial data
for a Brill wave spacetime.  It does so by starting from a
three--metric of the form originally considered by Brill
\begin{equation}
ds^2 = \Psi^4 \left[ e^{2q} \left( d\rho^2 + dz^2 \right)
+ \rho^2 d\phi^2 \right] =\Psi^4 \hat{ds}^{2},
\label{eqn:brillmetric}
\end{equation}
where $q$ is a free function subject to certain regularity and
fall-off conditions, $\rho=\sqrt{x^2+y^2}$ and $\Psi$ is a conformal
factor to be solved for.

Thorn {\tt IDBrillData} provides three choices for the $q$ function: 
an exponential form, ({\tt IDBrillData::q\_function = "exp"})
\begin{equation}
q = a \; \frac{\rho^{2+b}}{r^2} e^{-\left( \frac{z}{\sigma_z} \right)^2}
e^{-(\rho - \rho_0)^2} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
\cos^2 \left( n \phi + \phi_0 \right) \right]
\end{equation}
a generalized form of the $q$ function first written down by Eppley
({\tt IDBrillData::q\_function = "eppley"}) 
\begin{equation}
q = a \left( \frac{\rho}{\sigma_\rho} \right)^b \frac{1}{1 + \left[
\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}\left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
\cos^2 \left( n \phi + \phi_0 \right) \right]
\end{equation}
and the (default) Gundlach $q$ function which includes the Holz form
({\tt IDBrillData::q\_function = "gundlach"})
\begin{equation} 
q = a \left( \frac{\rho}{\sigma_\rho} \right)^b e^{-\left[
\left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m}
\cos^2 \left( n \phi + \phi_0 \right) \right]
\end{equation}

Substituting the metric into the Hamiltonian constraint gives an
elliptic equation for the conformal factor $\Psi$ which is then
numerically solved for a given function $q$:
\begin{equation}
\hat{\nabla} \Psi - \frac{\Psi}{8} \hat{R} = 0
\end{equation}
where the conformal Ricci scalar is found to be
\begin{eqnarray}
\hat{R} = -2 \left(e^{-2q} (\partial^2_z q + \partial^2_\rho q) + 
\frac{1}{\rho^2} (3 (\partial_\phi q)^2 + 2 \partial_\phi q)\right)
\end{eqnarray}
Assuming the initial data to be time symmetric means that the momentum
constraints are trivially satisfied.

In the case of axisymmetry (that is $d=0$ in the above expressions for
$q$), the Hamiltonian constraint can be written as an elliptic
equation for $\Psi$ with just the flat space Laplacian,
\begin{equation}
\nabla_{flat} \Psi + \frac{\Psi}{4} (\partial_z^2 q + \partial_\rho^2 q) = 0
\end{equation}
If the initial data is chosen to be {\tt
ADMBase::initial\_data = "brilldata2D"} then this elliptic equation
is solved rather than the equation above.


\section{Generating Initial Data with IDBrillData}

Brill initial data is activated by choosing the {\tt CactusEinstein/ADMBase}
parameter {\tt initial\_data} to be {\tt brilldata}, or for the case of
axisymmetry {\tt brilldata2D} can also be used.

The parameter {\tt IDBrillData::q\_function} chooses the form of the
$q$ function to be used, defaulting to the Gundlach expression.

Additional {\tt IDBrillData} parameters for each form of $q$ fix the 
remaining freedom:

\begin{itemize}

\item Exponential $q$: {\tt IDBrillData::q\_function = "exp"}

$(a, b,\sigma_z,\rho_0)=$ ({\tt exp\_a, exp\_b, exp\_sigmaz,exp\_rho0})

\item Eppley $q$: {\tt IDBrillData::q\_function = "eppley"}

$(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt eppley\_a, eppley\_b, eppley\_sigmarho, eppley\_r0, eppley\_sigmar, eppley\_c})

\item Gundlach $q$: {\tt IDBrillData::q\_function = "gundlach"}

$(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt gundlach\_a, gundlach\_b, gundlach\_sigmarho, gundlach\_r0, gundlach\_sigmar, gundlach\_c})

\item Non-axisymmetric part for each choice of $q$

$(d, m, e, n, \phi0)=$ ({\tt brill3d\_d, brill3d\_m, brill3d\_e, brill3d\_n, brill3d\_phi0})

\end{itemize}

Note that the default $q$ expression is
$$
q = {\tt gundlach\_a} \quad \rho^2 e^{-r^2} 
$$

{\tt IDBrillData} can use the elliptic solvers (type LinMetric)
provided by {\tt CactusEinstein/EllSOR},\\ {\tt AEIThorns/BAM\_Elliptic},
or {\tt CactusElliptic/EllPETSc} to solve the equation resulting from 
the Hamiltonian constraint. 
In all cases the parameter {\tt thresh} sets the threshold for the elliptic
solve. The choice of elliptic solver is made 
through the parameter {\tt brill\_solver}:

\begin{itemize}
  
\item {\tt sor}: Understands the Robin boundary condition, additional 
parameters control the maximum number of iterations ({\tt sor\_maxit}).
  
\item {\tt bam}: {\tt BAM\_Elliptic} does not properly implement the
elliptic infrastructure of {\tt EllBase}, and the {\tt BAM\_Elliptic}
parameter to use the Robin boundary condition must be set independently
of \\{\tt IDBrillWave::brill\_bound}.

\end{itemize}

\section{Notes}

Thorn {\tt IDBrillData} understands both the ``{\tt physical}'' and ``{\tt
static conformal}'' {\tt metric\_type}. In the case of a conformal
metric being chosen, the conformal factor is set to $\Psi$. Currently
the derivatives of the conformal factor are not calculated, so that
only {\tt staticconformal::conformal\_storage = "factor"} is
supported.

\section{References}

\subsection{Specification of Brill Waves}

\begin{enumerate}

\item Dieter Brill, {\bf Ann. Phys.}, 7, 466, 1959.

\item Ken Eppley, {\bf Sources of Gravitational Radiation}, edited by L. Smarr (Cambridge University Press, 
Cambridge, England, 1979), p. 275.

\end{enumerate}

\subsection{Numerical Evolutions of Brill Waves}

\begin{enumerate}

\item {\it Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity}, 
 Miguel Alcubierre, Gabrielle Allen, Bernd Bruegmann, Gerd Lanfermann, Edward Seidel, Wai-Mo Suen, Malcolm Tobias,
{\bf Phys. Rev. D61}, 041501, 2000.

\end{enumerate}

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}