aboutsummaryrefslogtreecommitdiff
path: root/src/interp2.F
blob: 006287ff198546deca819a3db60a544a2ffbe738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
c /*@@
c@routine    interp2d
c@date       Fri Feb 14 08:46:53 1997
c@author     Paul Walker
c@desc 
c      Interpolates from 2D data var with coordinates x and y and
c      sizes nx and ny onto 1D data out with position outx and outy
c      and nout points.
c     <p>
c     This has linear, quadratic and cubic interpolators in it.
c     Or will one day very soon.
c@enddesc 
c@calls     
c@calledby   numerical_axig
c@@*/
      
      subroutine interp2d(var,x,y,nx,ny,out,outx,outy,nout,order)
      implicit none 
      integer nx,ny,nout
      real*8 var(nx,ny), x(nx), y(ny)
      real*8 out(nout),outx(nout),outy(nout)
      integer order
c Interpolation goes from ibelow to ibelow+[1,2,3] depending on order
      integer i,j,ibelow,jbelow,pt
      real*8 xsym,ysym,findx,findy,frac
      real*8 ydir(order+1)
      real*8 ft(10), xt(10)
      real*8 poly2inter, quad_2d, cubic_2d
      real*8 dx, dy, PI
      integer twobhjsad

      PI = 3.14159265

c     Set up the grid spacings
      dx = x(2) - x(1)
      dy = y(2) - y(1)

c Loop over all out points
      do pt=1,nout
         ysym = 1.0D0
         xsym = 1.0D0
c Check bounds
         findx = outx(pt)
         if (findx .lt. x(1)) then 
            write (*,*) "Below inner bound at ",pt,outx(pt)
            STOP
         endif
         if (findx .gt. x(nx)) then
            write (*,*) "Above x bounds at ",pt,outx(pt),x(nx)
            STOP
         endif
         findy = outy(pt)
         if (findy .lt. y(1)) then 
            write (*,*) "Below  y inner bound at ",pt,outy(pt)
            STOP
         endif
         if (findy .gt. y(ny)) then 
            write (*,*) "Below  y inner bound at ",pt,outy(pt)
            STOP
         endif

c Locate ourselves in i,j space
c         do i=1,nx
c            if (x(i) .lt. findx) then
c               ibelow = i
c            endif
c         enddo
c     Assume a regular grid
         ibelow = (findx-x(1))/dx+1

         if (order .eq. 3 .and. ibelow .gt. 1) then
            ibelow = ibelow - 1
         endif
         if (ibelow + order .gt. nx) then
            ibelow = nx - order
         endif

c         do i=1,ny
c            if (y(i) .lt. findy) then
c               jbelow = i
c            endif
c         enddo
c     Assume a regular grid
         jbelow = (findy-y(1))/dy+1
         if (order .eq. 3 .and. jbelow .gt. 1) then
            jbelow = jbelow - 1
         endif
         if (jbelow + order .gt. ny) then
            jbelow = ny - order
         endif

c         write (*,*) "PT :",findx,findy
c         write (*,*) "SYM:",sym
c         write (*,*) "BOUND X ",ibelow,x(ibelow),x(ibelow+1)
c         write (*,*) "BOUND Y ",jbelow,y(jbelow),y(jbelow+1)


c     So do the interpolation
         if (order .eq. 1) then 
c     Interp in the x direction
            frac = (findx-x(ibelow))/(x(ibelow+1)-x(ibelow))
            ydir(1) = frac * var(ibelow+1,jbelow) + 
     $           (1.0 - frac)*var(ibelow,jbelow)
            ydir(2) = frac * var(ibelow+1,jbelow+1) + 
     $           (1.0 - frac)*var(ibelow,jbelow+1)
c     And now in the y direction
            frac = (findy-y(jbelow))/(y(jbelow+1)-y(jbelow))
            out(pt) = xsym * ysym * 
     $           (frac * ydir(2) + (1.0 - frac) * ydir(1))
         else if (order .eq. 2) then
c     Load up for calls to poly2inter
            do j=1,3
               do i=1,3
                  ft(i) = var(ibelow+i-1,jbelow+j-1)
                  xt(i) = x(ibelow+i-1)
               enddo
               ydir(j) = quad_2d(ft,xt(1),dx,findx)
            enddo
            do j=1,3
               xt(j) = y(jbelow+j-1)
            enddo
            out(pt) = xsym * ysym*quad_2d(ydir,xt(1),dy,findy)
         else if (order .eq. 3) then
c     Load up for calls to cubic
            do j=1,4
               do i=1,4
                  ft(i) = var(ibelow+i-1,jbelow+j-1)
                  xt(i) = x(ibelow+i-1)
               enddo
               ydir(j) = cubic_2d(ft,xt(1),dx,findx)
            enddo
            do j=1,4
               xt(j) = y(jbelow+j-1)
            enddo
            out(pt) = xsym * ysym*cubic_2d(ydir,xt(1),dy,findy)
         else
            write (*,*) "ORDER set wrong in interp2d",order
            stop
         endif
      enddo
         
      return
      end
      
      real*8 function linear_2d(f, x0, dx, findx)
      implicit none
      real*8 f(2),x0,dx,findx
      real*8 frac
      
      frac = (findx-x0)/dx
      linear_2d = (frac)*f(2) + (1.0-frac)*f(1)
         
      return
      end
      
      real*8 function quad_2d(f, x0, dx, findx)
      implicit none
      real*8 f(3),x0, dx, findx
      real*8 f0,f1,f2
      real*8 a,b,c, dx2, x02, o2dx2
c     Mathematica tells us
c     -  List(List(Rule(c,(2*dx**2*f0 + 3*dx*f0*x0 - 4*dx*f1*x0 
c     -        + dx*f2*x0 +  f0*x0**2 - 2*f1*x0**2 + f2*x0**2)
c     -        /(2*dx**2)), Rule(b,(-3*dx*f0 + 4*dx*f1 - dx*f2 - 2*f0*x0 
c     -        + 4*f1*x0 - 2*f2*x0)/(2*dx**2)),Rule(a,(f0 - 2*f1 + 
c     -        f2)/(2*dx**2))))
      
      f0 = f(1)
      f1 = f(2)
      f2 = f(3)
      dx2 = dx**2
      x02 = x0**2
      o2dx2 = 1.0D0/(2.0D0*dx2)
      
      c = (2.0D0*dx2*f0 + dx*x0*(3.0D0*f0 - 4.0D0*f1 + f2) + 
     $     x02*(f0 - 2.0D0*f1 + f2))*o2dx2
      b = (dx * (-3.0D0*f0 + 4.0D0*f1 - f2) + x0 * (- 2.0D0*f0 + 
     $     4.0D0*f1 - 2.0D0*f2))*o2dx2
      
      a = (f0 - 2.0D0*f1 + f2)*o2dx2
      
      quad_2d = a*findx**2 + b*findx + c
      
      return
      end
      
      real*8 function cubic_2d(f, x0, dx, findx)
      implicit none
      real*8 a,b,c,d
      real*8 f(4),x0,dx,findx
      
      a = -(f(1)-3.0*f(2)+3.0*f(3)-f(4)) / (6.0*(dx**3))
      
      b = (f(1)-2.0*f(2)+f(3))/(2.0*(dx**2)) +
     $     (f(1)-3.0*f(2)+3.0*f(3)-f(4))*(dx+x0)/(2.0*(dx**3))
      
      c = ((dx**2)*(-11.0*f(1) + 18.0*f(2) -  9.0*f(3) +  2.0*f(4)) +
     $     dx*x0*  (-12.0*f(1) + 30.0*f(2) - 24.0*f(3) +  6.0*f(4)) +
     $     (x0**2)*( -3.0*f(1) +  9.0*f(2) -  9.0*f(3) +  3.0*f(4))) /
     $     (6.0*(dx**3))
      
      d = ((dx**3)*   (  6.0*f(1) ) +
     $     (dx**2)*x0*( 11.0*f(1) - 18.0*f(2) +  9.0*f(3) -  2.0*f(4)) +
     $     (x0**2)*dx*(  6.0*f(1) - 15.0*f(2) + 12.0*f(3) -  3.0*f(4)) +
     $     (x0**3)*   (  1.0*f(1) -  3.0*f(2) +  3.0*f(3) -  1.0*f(4)))/
     $     (6.0*(dx**3))
         
      cubic_2d = ((a*findx + b)*findx + c)*findx + d
            
      return
      end