aboutsummaryrefslogtreecommitdiff
path: root/src/AxiBrillBHIVP.F
blob: fe68452b795557e1d1ee3830fe1f650fd093ff03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
c/*@@
c  @file      AxiBrillBHIVP.F
c  @date      
c  @author    
c  @desc 
c  
c  @enddesc 
c@@*/

#include "cctk.h" 
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

c/*@@
c  @routine    AxiBrillBHIVP
c  @date       
c  @author     
c  @desc 
c  
c  @enddesc 
c  @calls     
c  @calledby   
c  @history 
c
c  @endhistory 
c@@*/
      
c     Need include file from Einstein
#include "CactusEinstein/Einstein/src/Einstein.h"

      subroutine AxiBrillBHIVP(CCTK_FARGUMENTS)
      
      implicit none
      
      DECLARE_CCTK_FARGUMENTS
      DECLARE_CCTK_PARAMETERS

c     Perhaps this and others should go into cctk.h
      integer CCTK_Equals
      
      
      real*8 axibheps, rmax, dq, deta
      integer levels,id5,id9,idi,idg,ier
      real*8, allocatable :: cc(:,:),ce(:,:),cw(:,:),cn(:,:),cs(:,:),
     $     rhs(:,:),psi2d(:,:),detapsi2d(:,:),dqpsi2d(:,:),
     $     detaetapsi2d(:,:),detaqpsi2d(:,:),dqqpsi2d(:,:)
      real*8, allocatable :: etagrd(:),qgrd(:)
      real*8, allocatable :: eta(:,:,:),abseta(:,:,:),sign_eta(:,:,:),
     $     q(:,:,:),phi(:,:,:)
      real*8, allocatable :: psi2dv(:,:,:),detapsi2dv(:,:,:),
     $     dqpsi2dv(:,:,:),detaetapsi2dv(:,:,:),detaqpsi2dv(:,:,:),
     $     dqqpsi2dv(:,:,:)
      parameter(axibheps = 1.0d-12)
      real*8 ep1,ep2
      real*8 o1,o2,o3,o4,o5,o6,o7,o8,o9
      real*8 o10,o11,o12,o13,o14,o15,o16,o17,o18,o19
      real*8 o20,o21,o22,o23,o24,o25,o26,o27,o28,o29
      real*8 o30,o31,o32,o33,o34,o35,o36,o37,o38,o39
      real*8 o40,o41,o42,o43,o44,o45,o46,o47,o48,o49
      real*8 o50,o51,o52,o53,o54,o55,o56,o57,o58,o59
      real*8 o60,o61,o62,o63,o64,o65,o66,o67,o68,o69
      real*8 o70,o71,o72,o73,o74,o75,o76,o77,o78,o79
      real*8 o80,o81,o82,o83,o84,o85,o86,o87,o88,o89
      real*8 o90,o91,o92,o93,o94,o95,o96,o97,o98,o99
      real*8 pi
      real*8 adm
      integer :: nx,ny,nz
      integer i,j,k,nquads
      integer npoints,handle,ierror
      
      pi = 4.0d0*atan(1.0d0)
      
c     Set up the grid spacings
      nx = cctk_lsh(1)
      ny = cctk_lsh(2)
      nz = cctk_lsh(3)
      
c     Brill wave parameters

      print *,"Brill wave + BH Axisymmetric solve"
      write (*,123)amp,eta0,sigma,n
      print *,'etamax=',etamax
 123  format(1x,'Pars : Amp',f8.5,'  eta0',f8.5,'  sigma',f8.5,'  n ',i3)

c     Solve on this sized cartesian grid
c     2D grid size NE x NQ
c     Add 2 zones for boundaries...
      ne = ne+2
      nq = nq+2
      ! do I need to call free?
      allocate(cc(ne,nq),ce(ne,nq),cw(ne,nq),cn(ne,nq),cs(ne,nq),
     $     rhs(ne,nq),psi2d(ne,nq),detapsi2d(ne,nq),dqpsi2d(ne,nq),
     $     detaetapsi2d(ne,nq),detaqpsi2d(ne,nq),dqqpsi2d(ne,nq),
     $     etagrd(ne),qgrd(nq))
      allocate(eta(nx,ny,nz),abseta(nx,ny,nz),sign_eta(nx,ny,nz),
     $     q(nx,ny,nz),phi(nx,ny,nz),
     $     psi2dv(nx,ny,nz),detapsi2dv(nx,ny,nz),dqpsi2dv(nx,ny,nz),
     $     detaetapsi2dv(nx,ny,nz),detaqpsi2dv(nx,ny,nz),
     $     dqqpsi2dv(nx,ny,nz))
c Initialize some arrays
      psi2d = 1.0d0
      detapsi2d = 0.0d0

      nquads = 2
      dq = nquads*0.5*pi/(nq-2)
      deta = etamax/(ne-3)

      do j=1,nq
	qgrd(j) = (j-1.5)*dq
	do i=1,ne
	  etagrd(i) = (i-2)*deta
#include "Development/IDAxiBrillBH/src/bhbrill.x"
	enddo
      enddo
c     Boundary conditions
      do j=1,nq
	ce(2,j)=ce(2,j)+cw(2,j)
	cw(2,j)=0.0

	cw(ne-1,j)=cw(ne-1,j)+ce(ne-1,j)
	cc(ne-1,j)=cc(ne-1,j)-deta*ce(ne-1,j)
	ce(ne-1,j)=0.0

      enddo
      do i=1,ne
	cc(i,2)=cc(i,2)+cs(i,2)
	cs(i,2)=0.0
	cc(i,nq-1)=cc(i,nq-1)+cn(i,nq-1)
	cn(i,nq-1)=0.0
      enddo

c     Do the solve
      print *, "     Calling axisymmetric solver"
      call mgparm (levels,5,id5,id9,idi,idg,ne,nq)
      call mg5 (ne,2,ne-1,nq,2,nq-1,
     $          cc,cn,cs,cw,ce,psi2d,rhs,
     $          id5,id9,idi,idg,1,axibheps,rmax,ier)
      print *, "     Solve complete"
c     The solution is now available.
c     Debugging is needed, a stop statement should
c     be called if the IVP solve is not successful

      if(ier .ne. 0) stop 'bad solution to brill wave problem'
      print *,'rmax = ',rmax
      print *,'axibheps = ',axibheps
      print *,'psi2d = ',maxval(psi2d),' ',minval(psi2d)

      ep2 = 0.0
      do j=2,nq-1
        do i=2,ne-1
          ep1 = rhs(i,j)-psi2d(i,j)*cc(i,j)-psi2d(i,j+1)*cn(i,j)-psi2d(i,j-1)*cs(i,j)-
     &      psi2d(i+1,j)*ce(i,j)-psi2d(i-1,j)*cw(i,j)
          ep2 = max(abs(ep1),ep2)
        enddo
      enddo
      print *,'Resulting eps =',ep2

      ! what a pain all this is....
      do j=1,nq
         psi2d(1,j)=psi2d(3,j)
         psi2d(ne,j)=-deta*psi2d(ne-1,j)+psi2d(ne-2,j)
      enddo
      do i=1,ne
        psi2d(i,1)=psi2d(i,2)
        psi2d(i,nq)=psi2d(i,nq-1)
      enddo
c      goto 111
      do j=2,nq-1
         do i=2,ne-1
            dqpsi2d(i,j)=0.5*(psi2d(i,j+1)-psi2d(i,j-1))/dq
            dqqpsi2d(i,j)=(psi2d(i,j+1)+psi2d(i,j-1)-2.*psi2d(i,j))/dq**2
            detapsi2d(i,j)=sinh(0.5*etagrd(i))+0.5*(psi2d(i+1,j)-psi2d(i-1,j))/deta
            detaetapsi2d(i,j)=0.5*cosh(0.5*etagrd(i))+
     $           (psi2d(i+1,j)+psi2d(i-1,j)-2.*psi2d(i,j))/deta**2
         enddo
      enddo
      do j=1,nq
        detapsi2d(1,j)=-detapsi2d(3,j)
        detapsi2d(ne,j)=detapsi2d(ne-2,j) ! simplified

        detaetapsi2d(1,j)=detaetapsi2d(3,j)
        detaetapsi2d(ne,j)=detaetapsi2d(ne-2,j) ! simplified...

        dqqpsi2d(1,j)=dqqpsi2d(3,j)
        dqqpsi2d(ne,j)=dqqpsi2d(ne-2,j) ! simplified

        dqpsi2d(1,j)=dqpsi2d(3,j)
        dqpsi2d(ne,j)=-dq*dqpsi2d(ne-1,j)+dqpsi2d(ne-2,j)
      enddo
      do i=1,ne
        detapsi2d(i,1)=detapsi2d(i,2)
        detapsi2d(i,nq)=detapsi2d(i,nq-1)

        detaetapsi2d(i,1)=detaetapsi2d(i,2)
        detaetapsi2d(i,nq)=detaetapsi2d(i,nq-1)

        dqqpsi2d(i,1)=dqqpsi2d(i,2)
        dqqpsi2d(i,nq)=dqqpsi2d(i,nq-1)

        dqpsi2d(i,1)=-dqpsi2d(i,2)
        dqpsi2d(i,nq)=-dqpsi2d(i,nq-1)
      enddo
      do j=2,nq-1
        do i=2,ne-1
          detaqpsi2d(i,j)=0.5*(detapsi2d(i,j+1)-detapsi2d(i,j-1))/dq
        enddo
      enddo
      do j=1,nq
        detaqpsi2d(1,j)=-detaqpsi2d(3,j)
        detaqpsi2d(ne,j)=detaqpsi2d(ne-2,j) ! simplified
      enddo
      do i=1,ne
        detaqpsi2d(i,1)=-detaqpsi2d(i,2)
        detaqpsi2d(i,nq)=-detaqpsi2d(i,nq-1)
      enddo
      do j=1,nq
        psi2d(:,j)=psi2d(:,j)+2.*cosh(0.5*etagrd)
      enddo

c     Now evaluate each of the following at x(i,j,k), y(i,j,k) and 
c     z(i,j,k) where i,j,k go from 1 to nx,ny,nz
      
c     Conformal factor

      eta = 0.5d0 * dlog (x**2 + y**2 + z**2)
      abseta = abs (eta)
      q = datan2 (sqrt (x**2 + y**2), z)
      phi = datan2 (y, x)

      do k=1,nz
         do j=1,ny
            do i=1,nx
c               eta(i,j,k) = 0.5d0*dlog(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2)
c               abseta(i,j,k) = abs(eta(i,j,k))
               if(eta(i,j,k) .lt. 0)then
                  sign_eta(i,j,k) = -1
               else
                  sign_eta(i,j,k) = 1
               endif
c               q(i,j,k) = datan2(sqrt(x(i,j,k)**2+y(i,j,k)**2),z(i,j,k))
c                                    TYPO HERE ???????????
c                                                 |
c                                                 |
c               phi(i,j,k)= datan2(y(i,j,k),x(i,j,k))
            enddo
         enddo
      enddo

      call CCTK_GetInterpHandle (handle, "simple_local")
      
      npoints = nx*ny*nz

      call CCTK_Interp (ierror,cctkGH,handle,npoints,2,6,6,
     $     ne,nq,abseta,q,
     $     CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,
     $     etagrd(1),qgrd(1),deta,dq,
     $     psi2d,detapsi2d,dqpsi2d,detaetapsi2d,detaqpsi2d,dqqpsi2d,
     $     CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,
     $     CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,
     $     psi2dv,detapsi2dv,dqpsi2dv,detaetapsi2dv,detaqpsi2dv,
     $     dqqpsi2dv,
     $     CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,
     $     CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL,CCTK_VARIABLE_REAL)

      psi = psi2dv * exp (-0.5 * eta)
      detapsi2dv = sign_eta * detapsi2dv
      detaqpsi2dv = sign_eta * detaqpsi2dv

      do k=1,nz
         do j=1,ny
            do i=1,nx
               
c               psi(i,j,k) = psi2dv(i,j,k)*exp(-0.5*eta(i,j,k))
c               detapsi2dv(i,j,k) = sign_eta(i,j,k)*detapsi2dv(i,j,k)
               
c     psix = \partial psi / \partial x / psi
#include "Development/IDAxiBrillBH/src/psi_1st_deriv.x"
               
c               detaqpsi2dv(i,j,k) = sign_eta(i,j,k)*detaqpsi2dv(i,j,k)
               
c     psixx = \partial^2\psi / \partial x^2 / psi
#include "Development/IDAxiBrillBH/src/psi_2nd_deriv.x"
            enddo
         enddo
      enddo
      
c     Conformal metric
c     gxx = ...
      
c     Derivatives of the metric
c     dxgxx = 1/2 \partial gxx / \partial x

      do k=1,nz
         do j=1,ny
            do i=1,nx
c THESE WERE ALREADY CALCULATED ABOVE !!!
c               eta(i,j,k) = 0.5d0*dlog(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2) 
c               q(i,j,k) = datan2(sqrt(x(i,j,k)**2+y(i,j,k)**2),z(i,j,k))
c               phi(i,j,k) = datan2(y(i,j,k),x(i,j,k))
#include "Development/IDAxiBrillBH/src/gij.x"
            enddo
         enddo
      enddo

c     Curvature
      kxx = 0.0D0
      kxy = 0.0D0
      kxz = 0.0D0
      kyy = 0.0D0
      kyz = 0.0D0
      kzz = 0.0D0
      
 111  continue
c     Set ADM mass
      i = ne-15
      adm = 0.0
      do j=2,nq-1
        adm=adm+(psi2d(i,j)-(psi2d(i+1,j)-psi2d(i-1,j))/deta)*exp(0.5*
     $        etagrd(i))
      enddo
      adm=adm/(nq-2)
      print *,'ADM mass: ',adm
      if (CCTK_Equals(initial_lapse,"schwarz")==1) then
         write (*,*)"Initial with schwarzschild-like lapse"
         write (*,*)"using alp = (2.*r - adm)/(2.*r+adm)."
         alp = (2.*r - adm)/(2.*r+adm)
      endif
      
      conformal_state = CONFORMAL_METRIC
      
      deallocate(cc,ce,cw,cn,cs,rhs,psi2d,detapsi2d,dqpsi2d,
     $     detaetapsi2d,detaqpsi2d,dqqpsi2d,
     $     etagrd,qgrd,
     $     eta,abseta,sign_eta,q,phi,psi2dv,detapsi2dv,dqpsi2dv,
     $     detaetapsi2dv,detaqpsi2dv,dqqpsi2dv)

      return
      end