aboutsummaryrefslogtreecommitdiff
path: root/src/Misner_standard.c
blob: ce393822da35a15936d8278e2e7adc9ba14ab5c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
 /*@@
   @file      Misner_standard.c
   @date      March 1997
   @author    Joan Masso
   @desc 
      Set up initial data for two Misner black holes
   @enddesc 
   @history
   @hdate Sun Oct 17 11:05:48 1999 @hauthor Tom Goodale
   @hdesc Converted to C
   @endhistory
 @@*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "CactusEinstein/Einstein/src/Einstein.h"

#define SQR(a) ((a)*(a))

 /*@@
   @routine    Misner_standard
   @date       
   @author     Joan Masso, Ed Seidel
   @desc 
            Initialize the metric with a time symmetrical 
            black hole spacetime containing
            two axially symmetric misner black holes with a 
            mass/length parameter mu. The mass is computed.
            The spacetime line element has the form:
                 $$ ds^2 = -dt^2 + \Psi^4 (dx^2+dy^2+dz^2) $$
            and only $\Psi$ differs.
            (Conformal factor from Karen Camarda)
   @enddesc 
   @calls     
   @history 
 
   @endhistory 

   @par      mu
   @pdesc    Misner parameter. 
   @ptype    real
   @pcomment Values less than 1.8 do not really correspond to two 
            black holes, as there is an initial single event horizon 
            surrounding the throats. So, with low values of mu we also
            have distorted single black holes.
   @endpar
 
   @par      nmax
   @pdesc    Summation limit for the misner series in the 'twobh' case.
   @ptype    integer
   @endpar

@@*/
void Misner_standard(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS

  int i, n;
  int npoints;
  CCTK_REAL *csch, *coth, inv_r1, inv_r2;
  CCTK_REAL x_squared, y_squared, xy_squared;
  CCTK_REAL inv_r1_cubed, inv_r2_cubed;
  CCTK_REAL inv_r1_5, inv_r2_5;
  CCTK_REAL inv_psi;
  CCTK_INT powfac;
  const CCTK_REAL zero = 0.0, one = 1.0, three = 3.0;


  /* total number of points on this processor */
  npoints = cctk_lsh[0] * cctk_lsh[1] * cctk_lsh[2];


  /*     Initialize so we can accumulate
   *     ------------------------------- 
   */
  if (use_conformal_derivs)
  {
    memset (psix, 0, npoints * sizeof (CCTK_REAL));
    memset (psiy, 0, npoints * sizeof (CCTK_REAL));
    memset (psiz, 0, npoints * sizeof (CCTK_REAL));
    memset (psixx, 0, npoints * sizeof (CCTK_REAL));
    memset (psixy, 0, npoints * sizeof (CCTK_REAL));
    memset (psixz, 0, npoints * sizeof (CCTK_REAL));
    memset (psiyy, 0, npoints * sizeof (CCTK_REAL));
    memset (psiyz, 0, npoints * sizeof (CCTK_REAL));
    memset (psizz, 0, npoints * sizeof (CCTK_REAL));
  }

  csch = (CCTK_REAL *) malloc (2 * (nmax + 1) * sizeof (CCTK_REAL));
  coth = csch + nmax + 1;

  /*     compute the ADM mass
   *     -------------------- 
   */
  mass = zero;
  for(n = 1; n <= nmax; n++)
  {
    csch[n] = one / sinh(mu*n);
    coth[n] = one / tanh(mu*n);
    mass   += 4.0 * csch[n];
  }
  CCTK_VInfo(CCTK_THORNSTRING, "ADM mass is %f", (double) mass);


  for(i = 0; i < npoints; i++)
  {
    psi [i] = one;

    x_squared  = SQR(x[i]);
    y_squared  = SQR(y[i]);
    xy_squared = x_squared + y_squared;

    for(n = nmax; n >= 1; n--)
    {
      inv_r1 = one / sqrt(xy_squared+SQR(z[i]+coth[n]));
      inv_r2 = one / sqrt(xy_squared+SQR(z[i]-coth[n]));
          
      psi[i] += csch[n]*(inv_r1 + inv_r2);
          
      if (use_conformal_derivs)
      {
        inv_r1_cubed = inv_r1 * inv_r1 * inv_r1;
        inv_r2_cubed = inv_r2 * inv_r2 * inv_r2;
        inv_r1_5     = pow(inv_r1, 5);
        inv_r2_5     = pow(inv_r2, 5);
        psix[i]  +=  -x[i] * (inv_r2_cubed + inv_r1_cubed) * csch[n];
        psiy[i]  +=  -y[i] * (inv_r2_cubed + inv_r1_cubed) * csch[n];
        psiz[i]  +=  (-(z[i]-coth[n])*inv_r2_cubed - (z[i]+coth[n])*inv_r1_cubed) * csch[n];
        psixx[i] +=  (three*x_squared*(inv_r1_5 + inv_r2_5)
                      - inv_r1_cubed - inv_r2_cubed) * csch[n];
        psixy[i] +=  three*x[i]*y[i]*(inv_r1_5 + inv_r2_5) * csch[n];
        psixz[i] +=  (three*x[i]*(z[i] - coth[n])*inv_r2_5 
                      + three*x[i]*(z[i] + coth[n])*inv_r1_5) * csch[n];
        psiyy[i] +=  (three*y_squared*(inv_r1_5 + inv_r2_5)
                      - inv_r1_cubed - inv_r2_cubed) * csch[n];
        psiyz[i] +=  (three*y[i]*(z[i] - coth[n])*inv_r2_5
                      + three*y[i]*(z[i] + coth[n])*inv_r1_5) * csch[n];
        psizz[i] += (-inv_r2_cubed+three*SQR(z[i] - coth[n])*inv_r2_5
                      + three*SQR(z[i] + coth[n])*inv_r1_5 - inv_r1_cubed) * csch[n];
      }
    }

    /*     Cactus convention
     *     -----------------
     */
    if (use_conformal_derivs)
    {
      inv_psi = one / psi[i];

      psix[i]  *= inv_psi;
      psiy[i]  *= inv_psi;
      psiz[i]  *= inv_psi;
      psixx[i] *= inv_psi;
      psixy[i] *= inv_psi;
      psixz[i] *= inv_psi;
      psiyy[i] *= inv_psi;
      psiyz[i] *= inv_psi;
      psizz[i] *= inv_psi;
    }
  }
  
  /*     Should initialize lapse to Cadez value if possible
   *     --------------------------------------------------
   */

  if (CCTK_Equals(initial_lapse,"cadez"))
  { 
    CCTK_INFO("Initialise with cadez lapse");
    
    for(i = 0; i < npoints; i++)
    {
      xy_squared = SQR(x[i]) + SQR(y[i]);

      alp[i] = one;

      powfac = 1;

      for(n = 1; n <= nmax; n++)
      {
        inv_r1 = one / sqrt(xy_squared+SQR(z[i]+coth[n]));
        inv_r2 = one / sqrt(xy_squared+SQR(z[i]-coth[n]));
        powfac = -powfac;

        alp[i] += powfac * csch[n] * (inv_r1 + inv_r2);
      }

      alp[i] /= psi[i];
    }
  }
  
  /*     Metric depends on conformal state
   *     ---------------------------------
   */

  if (*conformal_state == CONFORMAL_METRIC)
  {
    for(i = 0; i < npoints; i++)
    {
      gxx[i] = one;
      gyy[i] = one;
      gzz[i] = one;
    }
  }
  else 
  {
    for(i = 0; i < npoints; i++)
    {
      gxx[i] = pow(psi[i],4);
      gyy[i] = gxx[i];
      gzz[i] = gxx[i];
    }
  }
  memset (gxy, 0, npoints * sizeof (CCTK_REAL));
  memset (gxz, 0, npoints * sizeof (CCTK_REAL));
  memset (gyz, 0, npoints * sizeof (CCTK_REAL));

  /*     Time-symmetric data
   *     -------------------
   */
  memset (kxx, 0, npoints * sizeof (CCTK_REAL));
  memset (kyy, 0, npoints * sizeof (CCTK_REAL));
  memset (kzz, 0, npoints * sizeof (CCTK_REAL));
  memset (kxy, 0, npoints * sizeof (CCTK_REAL));
  memset (kxz, 0, npoints * sizeof (CCTK_REAL));
  memset (kyz, 0, npoints * sizeof (CCTK_REAL));

  if (csch)
  {
    free (csch);
  }
}