aboutsummaryrefslogtreecommitdiff
path: root/doc/ThornGuide.tex
blob: 80d4270b1043a22c757cc42aaca601c0ccc84419 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
\documentstyle{report}
\newcommand{\parameter}[1]{{\it #1}}

\begin{document}

\chapter{IDAnalyticBH}

\begin{tabular}{@{}ll}
Code Authors & Joan Masso, Paul Walker, Ed Seidel. Gabrielle Allen \\
Maintained by & Cactus Developers \\
Documentation Authors & 
\end{tabular}

\section{Introduction}
  
\subsection{Purpose of Thorn}

Thorn IDAnalyticBH provides analytic initial data for vacuum black 
hole spacetimes. Initial data is provided for the 3-metric, extrinsic
curvature, and if appropriate the conformal factor and it's spatial 
derivatives. The current initial data sets are for a single (Schwarzschild)
black hole in isotropic coordinates, up to four Brill-Lindquist black 
holes, and any number of Misner-type black holes.

\subsection{Technical Specification}

\begin{itemize}

\item{Implements} einsteinID
\item{Inherits from} einstein
\item{Tested with thorns} Einstein

\end{itemize}

\section{Theoretical Background}


\section{Algorithmic and Implementation Details}

This thorn uses no special numerical methods, however two points
are worth noting

\begin{enumerate}

\item{} The solution for Misner is obtained by summing a sequence

\item{} The spatial derivatives of the conformal metric (when required) 
        are calculated accurately using finite differencing of the 
        exact solution by a very small spacing

\end{enumerate}

\section{Using the Thorn}

This thorn can provide either the physical metric (use\_conformal=''no'')
or the conformal metric and a conformal factor (and its spatial derivatives)
(use\_conformal=''yes''). In general, the option use\_conformal=''yes'' should 
be used, since ????. 

\section{Parameters}

\subsection{Extended Parameters}
\begin{tabular}{l|l|l|l}
&&&\\
einstein &&&\\
\hline
\parameter{initial\_data} & KEYWORD & schwarzschild & One Schwarzschild black hole \\
& & bl\_bh & Brill Lindquist black holes \\
& & misner\_bh &Misner black holes \\
& & multiple\_misner\_bh & Multiple Misner black holes \\
\parameter{initial_lapse} & KEYWORD & schwarz & Set lapse to schwarzschild \\
\end{tabular}

\subsection{Private Parameters}

\begin{tabular}{l|l|l|l|l}
&&&&\\
Schwarzschild & & & & \\
\hline
\parameter{mass} & {\t CCTK\_REAL} & $(-\infty,\infty)$ & 2.0 & Mass of black hole \\
&&&&\\
Multiple Misner & & & & \\
\hline
\parameter{mu} & {\t CCTK\_REAL} & $[0,\infty)$ & 1.2 & Misner $\mu$ value \\
\parameter{nmax} & {\t CCTK\_INT} & $[0,\infty)$ & 30 & Numer of terns to include for Misner series \\
\parameter{misner\_nmh} & {\t CCTK\_INT} & $[0,10]$ & 1 & Number of Misner black holes \\
&&&&\\
Brill Lindquist & & & & \\
\hline
\parameter{bl\_nbh} & {\t CCTK\_INT} & $[1,4]$ & 1 & Number of Brill Lindquist black holes\\
\parameter{bl\_x0\_1} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 & x-position of first BL hole\\
\parameter{bl\_y0\_1} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  y-position of first BL hole\\
\parameter{bl\_z0\_1} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  z-position of first BL hole\\
\parameter{bl\_M\_1} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 1.0 &  mass of first BL hole\\
\parameter{bl\_x0\_2} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 & x-position of second BL hole\\
\parameter{bl\_y0\_2} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  y-position of second BL hole\\
\parameter{bl\_z0\_2} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  z-position of second BL hole\\
\parameter{bl\_M\_2} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 1.0 &  mass of second BL hole\\
\parameter{bl\_x0\_3} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 & x-position of third BL hole\\
\parameter{bl\_y0\_3} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  y-position of third BL hole\\
\parameter{bl\_z0\_3} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  z-position of third BL hole\\
\parameter{bl\_M\_3} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 1.0 &  mass of third BL hole\\
\parameter{bl\_x0\_4} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 & x-position of fourth BL hole\\
\parameter{bl\_y0\_4} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  y-position of fourth BL hole\\
\parameter{bl\_z0\_4} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 0.0 &  z-position of fourth BL hole\\
\parameter{bl\_M\_4} & {\t CCTK\_REAL} &  $(-\infty,\infty)$ & 1.0 &  mass of fourth BL hole\\
\end{tabular}

\subsection{Discussion}



\section{Interaction with Other Thorns}

It is still to be decided how initial data should be supplied to
for systems of evolution equations which use more or different 
variables to those in the einstein implementation

\section{Future Development}

Initial data sets which are missing from this thorn include

\begin{itemize}

\item{} Boosted single black hole
\item{} Single black hole in harmonic spatial coordinates
\item{} Single black hole in Eddington-Finkelstein coordinates

\end{itemize}


\end{document}