aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/documentation.tex')
-rw-r--r--doc/documentation.tex27
1 files changed, 9 insertions, 18 deletions
diff --git a/doc/documentation.tex b/doc/documentation.tex
index f6ca33d..5d8e7a8 100644
--- a/doc/documentation.tex
+++ b/doc/documentation.tex
@@ -82,7 +82,7 @@ associated parameters in turn.
The Schwarzschild metric corresponds to a single, static, black hole.
If the Cactus metric is specified as a conformal metric (by setting
\texttt{admbase::metric\_type="yes"}), then the metric is
-set using isotropic coordinates \cite{CactusEinstein_IDAnalytic_mtw-isotropic}:
+set using isotropic coordinates \cite{CactusEinstein_IDAnalyticBH_mtw-isotropic}:
\begin{equation}
ds^2 = -\left(\frac{2r - M}{2r + M}\right)^2
+ \left(1 + \frac{M}{2r}\right)^4 \left(dr^2 + r^2(d\theta^2
@@ -150,7 +150,7 @@ could modify your parameter file as follows:
\section{Kerr}
Kerr initial data for an isolated rotating black hole is specified
-using the ``quasi-isotropic'' coordinates \cite{CactusEinstein_IDAnalytic_brandt-seidel:1996}:
+using the ``quasi-isotropic'' coordinates \cite{CactusEinstein_IDAnalyticBH_brandt-seidel:1996}:
\begin{equation}
ds^2 = \psi^4 (dr^2 + r^2(d\theta^2 + \chi^2\sin^2\theta d\phi^2)),
\end{equation}
@@ -214,18 +214,15 @@ intial data with mass $M=1$ and angular momentum $a=0.3$ are:
The earliest suggestion for initial data that might be said to
corresponding to multiple black holes was given by Misner in 1960
-\cite{CactusEinstein_IDAnalytic_misner:1960}. He provided a prescription for writing a metric
+\cite{CactusEinstein_IDAnalyticBH_misner:1960}. He provided a prescription for writing a metric
connecting a pair of massive bodies, instaneously at rest, whose
throats are connected by a wormhole. Using the method of images, this
solution was generalised to describe any number of black holes whose
throats connect two identical asymptotically flat spacetimes
-\cite{CactusEinstein_IDAnalytic_misner:1963}.
+\cite{CactusEinstein_IDAnalyticBH_misner:1963}.
\begin{figure}
\centering
- \ifpdf
- \else
- \includegraphics[height=40mm]{misner.eps}
- \fi
+ \includegraphics[height=40mm]{misner}
\caption{The topology of the Misner spacetime is that of a pair of
asymptotically flat sheets connected by a number of Einstein-Rosen
bridges. By construction, an exact isometry exists between the upper
@@ -254,7 +251,7 @@ where the conformal factor $\psi$ is given by
\end{equation}
The extrinsic curvature for the Misner data is zero.
-The parameter $\mu_0$ is a measure of the ration of mass to separation
+The parameter $\mu_0$ is a measure of the ratio of mass to separation
of the throats, and is set using the parameter
\texttt{idanalyticbh::mu}. For values less than $\mu\simeq 1.8$, the
throats will have a single event horizon.
@@ -306,10 +303,7 @@ the first black hole lies on the $x$-axis (as in Figure
\begin{figure}
\centering
\label{fig:multi_misner}
- \ifpdf
- \else
- \includegraphics[height=40mm]{multi_misner.eps}
- \fi
+ \includegraphics[height=40mm]{multi_misner}
\caption{Configuration for three Misner throats using the
\texttt{multiple\_misner\_bh} initial data.}
\end{figure}
@@ -347,13 +341,10 @@ data which differs from the Misner data mainly in its choice of
spacetime topology. Whereas the Misner data presumes that the throats
connect a pair of asymptotically flat spacetimes which are identical
to each other, the Brill-Lindquist data connects each throat to a
-separate asymptotically flat region \cite{CactusEinstein_IDAnalytic_brill-lindquist:1963}.
+separate asymptotically flat region \cite{CactusEinstein_IDAnalyticBH_brill-lindquist:1963}.
\begin{figure}
\centering
- \ifpdf
- \else
- \includegraphics[height=40mm]{brill_lindquist.eps}
- \fi
+ \includegraphics[height=40mm]{brill_lindquist}
\caption{Two Brill-Lindquist throats connecting separate
asymptotically flat regions.}
\end{figure}