aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_CylindricalExplosionM.F90
blob: f6feeacb605c876703b18dd2cbb8a2a3765c1057 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
 /*@@
   @file      GRHydro_CylindricalExplosionM.F90
   @date      Apr 22, 2011
   @author    Scott Noble, Joshua Faber, Bruno Mundim
   @desc 
   Cylindrical magnetized shocks.
   @enddesc 
 @@*/

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

#define velx(i,j,k) vel(i,j,k,1)
#define vely(i,j,k) vel(i,j,k,2)
#define velz(i,j,k) vel(i,j,k,3)
#define sx(i,j,k) scon(i,j,k,1)
#define sy(i,j,k) scon(i,j,k,2)
#define sz(i,j,k) scon(i,j,k,3)
#define Bvecx(i,j,k) Bvec(i,j,k,1)
#define Bvecy(i,j,k) Bvec(i,j,k,2)
#define Bvecz(i,j,k) Bvec(i,j,k,3)
#define Bconsx(i,j,k) Bcons(i,j,k,1)
#define Bconsy(i,j,k) Bcons(i,j,k,2)
#define Bconsz(i,j,k) Bcons(i,j,k,3)


 /*@@
   @routine    GRHydro_cylindricalexplosionM
   @date       Fri Apr 22 14:51:37 EDT 2011
   @author     Scott Noble, Joshua Faber, Bruno Mundim
   @desc 
   Initial data for cylidrically symmetric shocks with 
   magnetic fields.  Meant to recreate tests demonstrated 
   in Komissarov (1999).
   @enddesc 
   @calls     
   @calledby   
   @history 
   Using GRHydro_ShockTubeM.F90 as a template.
   @endhistory 

@@*/

subroutine GRHydro_cylindricalexplosionM(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS
  
  CCTK_INT :: i, j, k, nx, ny, nz
  CCTK_REAL :: direction, det
  CCTK_REAL :: rhol, rhor, pressl, pressr
  CCTK_REAL :: bvcxl,bvcyl,bvczl
  CCTK_REAL :: tmp,tmp2,gam,r_inner,r_outer

  CCTK_REAL :: cyl_fr

!!$ Check that user selected proper magnetic field ID. Warn if wrong one is
!!$ selected and proceed to ignore the value
  if (.not. CCTK_EQUALS(initial_Bvec, "cylexp")) then
    call CCTK_WARN(1, "When using the cyclindrical explosion initial data, please also select 'cylexp' for initial_Bvec. I will proceed as if this was set")
  end if

!!$Uses Bx_init, By_init and Bz_init to set magnetic field strength
!!$Original tests had Bx_init = 0.1, 1.0   with By_init=Bz_init = 0

  bvcxl = Bx_init
  bvcyl = By_init
  bvczl = Bz_init

!!$Inner radius and outer radius (Komissarov's defaults)
!  r_inner = 8.d-1
!  r_outer = 1.d0
  r_inner = cyl_r_inner
  r_outer = cyl_r_outer

!!$Inner values
  rhor   = cyl_rho_inner
  pressr = cyl_press_inner

!!$Outer values
  rhol   = cyl_rho_outer
  pressl = cyl_press_outer

!!$Adiabatic index for test
  gam = gl_gamma

  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)

  do i=1,nx
    do j=1,ny
      do k=1,nz

!!$direction represents the cylindrical radius here.
!!$TODO: maybe switch these over so that shocktube_tube choses the axis of the
!!$cylinder instead of the apparently random mapping
        if (CCTK_EQUALS(shocktube_type,"xshock")) then
           direction = sqrt((x(i,j,k)-shock_xpos)**2+&
                (y(i,j,k)-shock_ypos)**2)
        else if (CCTK_EQUALS(shocktube_type,"yshock")) then
           direction = sqrt((y(i,j,k)-shock_ypos)**2+&
                (z(i,j,k)-shock_zpos)**2)
        else if (CCTK_EQUALS(shocktube_type,"zshock")) then
           direction = sqrt((x(i,j,k)-shock_xpos)**2+&
                (z(i,j,k)-shock_zpos)**2)
        end if

        tmp = cyl_fr(direction,r_inner,r_outer,rhol,rhor)
        tmp2 = cyl_fr(direction,r_inner,r_outer,pressl,pressr)/( (gam - 1.d0) * tmp ) 
        rho(i,j,k) = tmp
        eps(i,j,k) = tmp2

        velx(i,j,k) = 0.d0
        vely(i,j,k) = 0.d0
        velz(i,j,k) = 0.d0
        Bvecx(i,j,k)=bvcxl
        Bvecy(i,j,k)=bvcyl
        Bvecz(i,j,k)=bvczl

        det=SPATIAL_DETERMINANT(gxx(i,j,k),gxy(i,j,k),gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k))

        if (CCTK_EQUALS(GRHydro_eos_type,"Polytype")) then
          call Prim2ConPolyM(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k),&
               gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k),&
               det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k),&
               tau(i,j,k),Bconsx(i,j,k),Bconsy(i,j,k),Bconsz(i,j,k),rho(i,j,k),&
               velx(i,j,k),vely(i,j,k),velz(i,j,k),&
               eps(i,j,k),press(i,j,k),Bvecx(i,j,k),Bvecy(i,j,k),Bvecz(i,j,k),&
               w_lorentz(i,j,k))
        else
          call Prim2ConGenM(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k),&
               gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k),&
               det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k),&
               tau(i,j,k),Bconsx(i,j,k),Bconsy(i,j,k),Bconsz(i,j,k),rho(i,j,k),&
               velx(i,j,k),vely(i,j,k),velz(i,j,k),&
               eps(i,j,k),press(i,j,k),Bvecx(i,j,k),Bvecy(i,j,k),Bvecz(i,j,k),&
               w_lorentz(i,j,k))
        end if

     enddo
    enddo
  enddo

  densrhs = 0.d0
  srhs = 0.d0
  taurhs = 0.d0
  Bconsrhs = 0.d0


  return
  
end subroutine GRHydro_CylindricalExplosionM



function cyl_fr(R,r_inner,r_outer,min_f,max_f)

  implicit none

  CCTK_REAL :: cyl_fr
  CCTK_REAL :: R,r_inner,r_outer,min_f,max_f

  if(R .gt. r_outer) then 
     cyl_fr = min_f
  else if( R .lt. r_inner) then 
     cyl_fr = max_f
  else 
     cyl_fr = exp( ( log(max_f)*(r_outer - R) + log(min_f)*(R - r_inner) ) / (r_outer - r_inner) ) 
  end if

  return 

end function cyl_fr