aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_Bondi_new.F90
blob: b539c5f4a97c5879022900aeb9fd0a43cbe2e037 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
 /*@@
   @file      GRHydro_Bondi.F90 
   @date      Wed Jan 13 13:00:49 EST 2010
   @author    Scott C. Noble
   @desc 
   Hydro initial data for the relativistic Bondi solution about 
   a single Schwarzschild black hole. 
   @enddesc 
 @@*/

/*
   Calculates the Bondi solution, or the spherically symmetric hydrostationary 
   solution to a fluid on a static fixed background spacetime. We assume that one can
   calculate a radius "r" from the grid and that with respect to this radial coordinate, 
   the solution satisfies 

   d (\rho u^r) / dr    = 0 

   Assumes that the equation of state is  P = K \rho^\Gamma   and K  is set by 
   the location of the sonic point.     


 -- Implicitly assumes that there is no spin in the geometry as there is no Bondi 
    solution for spinning black holes.  If a spin is specified, a spherically symmetric 
    is still assumed but the 4-velocity is set consistently with the spinning spacetime. 
*/

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

# define M_PI     3.14159265358979323846d0  /* pi */

!!$Newton-Raphson parameters:

#define velx(i,j,k) vel(i,j,k,1)
#define vely(i,j,k) vel(i,j,k,2)
#define velz(i,j,k) vel(i,j,k,3)
#define sx(i,j,k) scon(i,j,k,1)
#define sy(i,j,k) scon(i,j,k,2)
#define sz(i,j,k) scon(i,j,k,3)

subroutine GRHydro_Bondi_Iso(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS
  
  CCTK_INT :: i, j, k, nx, ny, nz, imin, jb,N_points
  CCTK_REAL :: ONEmTINY
  PARAMETER (N_points=2000,ONEmTINY=0.999999d0)
  CCTK_REAL :: M, Msq, Mdot, rs, gam, rmin_bondi, rmax_bondi, cs_sq,cs,vs_sq,vs,rhos,gtemp,hs, Kval, Qdot
  CCTK_REAL :: logrmin,dlogr,rhotmp,utmp,vtmp,rspher
  CCTK_REAL :: r_bondi(N_points), logr_bondi(N_points), rho_bondi(N_points), u_bondi(N_points), v_bondi(N_points)
  CCTK_REAL :: drhodr, det, rhocheck, rhocheck2, riso, rnew, rsch, ucheck, psinew
  CCTK_REAL :: uiso, uisocheck, vcheck, ucheck2, vcheck2, xhat,yhat, zhat, xp, yp, zp
  CCTK_REAL :: f,df,ddf,a,b,c,rsm,roverm

  !!$set_bondi_parameters
  M = bondi_central_mass(1)
  Msq  = M*M
  Mdot = mdot_sonicpt_bondi
  rs = r_sonicpt_bondi
  gam = gl_gamma

  write(*,*) 'Bondi_pars:',M,mdot_sonicpt_bondi,r_sonicpt_bondi,gl_gamma

  rmin_bondi = M * bondi_rmin(1)
  rmax_bondi = M * bondi_rmax(1)

  cs_sq  =  M / ( 2.*rs - 3.*M ) 

  if( cs_sq > (gam - 1.)) then 
     cs_sq = gam - 1.
     rs = 0.5 * M * ( 3. + 1./cs_sq ) 
  endif
  
  cs     =  sqrt(cs_sq)
  vs_sq  =  M / ( 2. * rs )  
  vs     =  sqrt(vs_sq)
  rhos   =  Mdot / ( 4. * M_PI * vs * rs * rs ) 
  gtemp  =  gam - 1.
  hs     =  1. / ( 1. - cs_sq / (gam - 1.) )
  Kval      = hs * cs_sq * rhos**(-gtemp) / gam 
  Qdot   = hs * hs * ( 1. - 3. * vs_sq ) 
  
  logrmin = log10(rmin_bondi)
  dlogr = (log10(rmax_bondi) - logrmin)/(1.*(N_points-1))

  write(*,*)'More pars:',cs,vs,rhos,hs,Kval,Qdot,logrmin,dlogr

  rhotmp=1.0d30
  imin=1

  do i=1,N_points   
     logr_bondi(i) = logrmin + dlogr*(i-1)
     r_bondi(i) = 10.**(logr_bondi(i))
     utmp = abs(r_bondi(i) - r_sonicpt_bondi) 
     if (utmp < rhotmp) then 
        rhotmp = utmp 
        imin = i 
     endif
  enddo

  rhotmp = -1.  !!$ start with guess

  do i=imin,N_points
     rspher = r_bondi(i) 
     call find_bondi_solution( rspher, rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot )
     if(rhotmp < initial_rho_abs_min) then
        rhotmp = initial_rho_abs_min
        utmp = Kval * rhotmp**gl_gamma  / (gl_gamma - 1.)
     endif
     rho_bondi(i) = rhotmp
     u_bondi(i)   = utmp
     v_bondi(i)   = vtmp
  end do
  
  rhotmp = -1.
  
  do i=imin-1,1,-1
     rspher = r_bondi(i)
     call find_bondi_solution( rspher, rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot )
     if(rhotmp < initial_rho_abs_min) then
        rhotmp = initial_rho_abs_min
        utmp = K * rhotmp**gl_gamma  / (gl_gamma - 1.)
     endif
     rho_bondi(i) = rhotmp
     u_bondi(i)   = utmp
     v_bondi(i)   = vtmp
  enddo
  
  write(*,*)"i=1:",r_bondi(1),rho_bondi(1),u_bondi(1),v_bondi(1)
  write(*,*)"i=100:",r_bondi(100),rho_bondi(100),u_bondi(100),v_bondi(100)
  write(*,*)"i=1000:",r_bondi(1000),rho_bondi(1000),u_bondi(1000),v_bondi(1000)
  write(*,*)"i=1500:",r_bondi(1500),rho_bondi(1500),u_bondi(1500),v_bondi(1500)

!!$    // find the derivative near r=M
  rnew = 2.25 * M
  j = floor ( 0.5 +  (log10(rnew) - logrmin) / dlogr )  
  rhocheck = rho_bondi(j)
  call find_bondi_solution(rnew,rhocheck, ucheck, vcheck, rs, rhos, M, Mdot, Kval, gam, Qdot )
  uisocheck = 4.0*vcheck/3.0
  
  rnew = 0.25 * 3.02**2 * M/1.01
  j = floor( 0.5 +  (log10(rnew) - logrmin) / dlogr ) 
  rhocheck2 = rho_bondi(j)
  call find_bondi_solution( rnew, rhocheck2, ucheck2, vcheck2, rs, rhos, M, Mdot, Kval, gam, Qdot )
  drhodr = 100.0*(rhocheck2-rhocheck)/M 

  write(6,*)'Rhocheck:',rhocheck,rhocheck2,drhodr

  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)
  
  do i=1,nx
     do j=1,ny
        do k=1,nz
           
           xp=x(i,j,k)
           yp=y(i,j,k)
           zp=z(i,j,k)
           
           riso = sqrt(xp*xp + yp*yp + zp*zp +1.0e-16)
           xhat = xp/riso
           yhat = yp/riso
           zhat = zp/riso
	   roverm = riso/M
           
           if(roverm > ONEmTINY) then
              rsch = 0.25 * ( 2.*riso + M)**2 / riso
              jb = floor( 0.5 +  (log10(rsch) - logrmin) / dlogr ) 

              if(jb > N_points)jb = N_points

              rhotmp = rho_bondi(jb)
              call find_bondi_solution( rsch,rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot) 
              rho(i,j,k) = rhotmp
              uiso = vtmp / (1.0 - M/2.0/riso) / (1.0+ M/2.0/riso)
           else
              if(roverm > 0.5d0*ONEmTINY) then
                 rho(i,j,k) = rhocheck+drhodr*riso*(riso-M)/M
              else 
                 rho(i,j,k) = (rhocheck-drhodr*M/4.0)*(1.-cos(2.*M_PI*riso/M))/2.0
              endif
              utmp = Kval * rho(i,j,k)**( gam ) / (gam - 1.)
              uiso = uisocheck * riso / M
           endif
           eps(i,j,k) = utmp/rhotmp
           
           w_lorentz(i,j,k) = sqrt(1.0+gxx(i,j,k) * uiso**2)
           velx(i,j,k) = -1.0*uiso * xhat / w_lorentz(i,j,k)
           vely(i,j,k) = -1.0*uiso * yhat / w_lorentz(i,j,k)
           velz(i,j,k) = -1.0*uiso * zhat / w_lorentz(i,j,k)
           
           det=SPATIAL_DETERMINANT(gxx(i,j,k),gxy(i,j,k),gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k))

           call Prim2ConGen(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k), &
		  gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k), &
		  det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k), &
		  tau(i,j,k),rho(i,j,k), &
		  velx(i,j,k),vely(i,j,k),velz(i,j,k), &
		  eps(i,j,k),press(i,j,k),w_lorentz(i,j,k))
           
	   if(riso.gt.1.014d0.and.riso.lt.1.015)write(6,*)'Point to check:', &
	          x(i,j,k),y(i,j,k),z(i,j,k),riso,gxx(i,j,k),dens(i,j,k),tau(i,j,k),&
	          sx(i,j,k),sy(i,j,k),sz(i,j,k),rho(i,j,k),eps(i,j,k),&
	          velx(i,j,k),vely(i,j,k),velz(i,j,k)	

        end do
     end do
  end do

  densrhs = 0.d0
  srhs = 0.d0
  taurhs = 0.d0

  return

end subroutine GRHydro_Bondi_Iso

subroutine find_bondi_solution(r, rho, u, v, rs, rhos, M, Mdot, Kval, gam, Qdot )
  implicit none
  
  CCTK_REAL :: r, rho, u, v, rs, rhos, M, Mdot, Kval, gam, Qdot
  CCTK_REAL :: ur,r_sol, rho_old
  CCTK_REAL :: f, df, dx, x_old, resid, jac
  CCTK_REAL :: errx, x_orig, x
  CCTK_INT :: n_iter, i_extra, doing_extra, keep_iterating, i_increase
  CCTK_REAL :: vp, h, hp, term

  CCTK_REAL :: newt_tol_b,small_bondi
  CCTK_INT :: max_newt_iter_b, extra_newt_iter_b

  max_newt_iter_b = 30
  newt_tol_b = 1.0e-15
  extra_newt_iter_b = 2
  small_bondi = 1.0e-20

!!$  if(r>8.1043 .and. r<8.1044)write(*,*)'init guess:',r,rho
!!$  write(*,*)'init guess:',r,rho

  if (rho < 0.) then  
     if( r > 0.9*rs .and. r < 1.1*rs ) then 
        rho = rhos
     else
        if(r < rs) then
           ur = r**(-0.5)
        else     
           ur = 0.5*r**(-1.5)
        endif
        rho = Mdot / (4.*M_PI * r * r * ur)
     endif
  endif
  
!!$  if(r>8.1043 .and. r<8.1044)
!!$  write(*,*)'init guess:',r,ur,rho,rs,rhos,Mdot
!!$  if(r<1.0001e-10)write(*,*)'init guess:',r,ur,rho,rs,rhos,Mdot
!!$  write(*,*)'init guess:',r,ur,rho,rs,rhos,Mdot

  !!$ set global variables needed by residual function:
  r_sol = r 


!!$ Use Newton's method to find rho:
!!$  gnr_bondi( rho, NEWT_DIM_B, bondi_resid)     
  errx = 1.0
  df=1.0
  f=1.0
  doing_extra = 0

  rho_old=rho
  x=rho

  n_iter = 0

!!$ Start the Newton-Raphson iterations : 
  keep_iterating = 1
  do while( keep_iterating == 1 ) 
     
     hp  =  Kval * gam *  x**(gam - 2.)   !!$   //   dh/drho 
     h   =  1. +  hp * x / ( gam - 1. )
     v   =  Mdot / ( 4. * M_PI * r_sol * r_sol * x )    
     vp  =  -v / x   !!$ //  dv/drho
     term = 1. - 2.*M/r_sol + v*v
     resid  =  -Qdot  +  h * h * term
     jac =  2. * h *( hp*term + h*v*vp )
     dx = -resid / jac
     f = 0.5*resid**2
     df = -2. * f
     
     /* Save old values before calculating the new: */
     errx = 0.
     x_old = x
     
     x=x+dx

!!$     if(r>8.1043 .and. r<8.1044)write(*,*)'iter:',x,dx,resid,jac
     
!!$    /****************************************/
!!$    /* Calculate the convergence criterion */
!!$    /****************************************/
     
!!$    /* For the new criterion, always look at relative error in indep. variable: */
!!$    // METHOD specific:
     if(x==0) then
        errx = abs(dx)
        x = small_bondi
     else
        errx = abs(dx/x)
     endif
     
!!$    /*****************************************************************************/
!!$    /* If we've reached the tolerance level, then just do a few extra iterations */
!!$    /*  before stopping                                                          */
!!$    /*****************************************************************************/

!!$     if(r>8.1043 .and. r<8.1044)write(*,*)'iter3:',errx,newt_tol_b,keep_iterating, &
!!$          doing_extra,i_extra

     if((abs(errx)<=newt_tol_b) .and. (doing_extra == 0) .and. (extra_newt_iter_b > 0)) &
          doing_extra=1

    if( doing_extra == 1 ) i_extra=i_extra+1 
    
    if( ((abs(errx) <= newt_tol_b).and.(doing_extra == 0)) .or. &
         (i_extra > extra_newt_iter_b) .or. (n_iter >= (max_newt_iter_b-1)) ) &
         keep_iterating = 0

!!$     if(r>8.1043 .and. r<8.1044)write(*,*)'iter4:',errx,newt_tol_b,keep_iterating, &
!!$          doing_extra,i_extra

    
    n_iter=n_iter+1
    
 end do

 rho=x
 
!!$ Calculate other quantities:
 u = Kval * rho**( gam ) / (gam - 1.)
 v = Mdot / ( 4. * M_PI * r * r * rho )

!!$ if(r>8.1043 .and. r<8.1044)
!!$ write(*,*)'final:',r,rho,u,v

 
 return
 
end subroutine find_bondi_solution