aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_BondiM_new.F90
blob: 346bc198a17c660ddc74d013ab4aa18804a14796 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
 /*@@
   @file      GRHydro_Bondi.F90 
   @date      Wed Jan 13 13:00:49 EST 2010
   @author    Scott C. Noble
   @desc 
   Hydro initial data for the relativistic Bondi solution about 
   a single Schwarzschild black hole. 
   @enddesc 
 @@*/

/*
   Calculates the Bondi solution, or the spherically symmetric hydrostationary 
   solution to a fluid on a static fixed background spacetime. We assume that one can
   calculate a radius "r" from the grid and that with respect to this radial coordinate, 
   the solution satisfies 

   d (\rho u^r) / dr    = 0 

   Assumes that the equation of state is  P = K \rho^\Gamma   and K  is set by 
   the location of the sonic point.     


 -- Implicitly assumes that there is no spin in the geometry as there is no Bondi 
    solution for spinning black holes.  If a spin is specified, a spherically symmetric 
    is still assumed but the 4-velocity is set consistently with the spinning spacetime. 
*/

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

# define M_PI     3.14159265358979323846d0  /* pi */

!!$Newton-Raphson parameters:

#define velx(i,j,k) vel(i,j,k,1)
#define vely(i,j,k) vel(i,j,k,2)
#define velz(i,j,k) vel(i,j,k,3)
#define sx(i,j,k) scon(i,j,k,1)
#define sy(i,j,k) scon(i,j,k,2)
#define sz(i,j,k) scon(i,j,k,3)
#define Bvecx(i,j,k) Bvec(i,j,k,1)
#define Bvecy(i,j,k) Bvec(i,j,k,2)
#define Bvecz(i,j,k) Bvec(i,j,k,3)
#define Bconsx(i,j,k) Bcons(i,j,k,1)
#define Bconsy(i,j,k) Bcons(i,j,k,2)
#define Bconsz(i,j,k) Bcons(i,j,k,3)

subroutine GRHydro_BondiM_Iso(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS
  
  CCTK_INT :: i, j, k, nx, ny, nz, imin, jb,N_points
  CCTK_REAL :: ONEmTINY, tiny
  PARAMETER (N_points=100000,ONEmTINY=0.999999d0,tiny=1.0d-12)
  CCTK_REAL :: M, Msq, Mdot, rs, gam, rmin_bondi, rmax_bondi, cs_sq,cs,vs_sq,vs,rhos,gtemp,hs, Kval, Qdot
  CCTK_REAL :: logrmin,dlogr,rhotmp,utmp,vtmp,rspher
  CCTK_REAL :: r_bondi(N_points), logr_bondi(N_points), rho_bondi(N_points), u_bondi(N_points), v_bondi(N_points)
  CCTK_REAL :: drhodr, det, rhocheck, rhocheck2, riso, rnew, rsch, ucheck
  CCTK_REAL :: uiso, uisocheck, vcheck, ucheck2, vcheck2, xhat,yhat, zhat, xp, yp, zp
  CCTK_REAL :: f,df,ddf,a,b,c,rsm,roverm,dudr,uisocheck2,auiso,buiso
  CCTK_REAL :: bondi_bsmooth

  character(400) :: debug_message

  !!$set_bondi_parameters
  M = bondi_central_mass(1)
  Msq  = M*M
  Mdot = mdot_sonicpt_bondi
  rs = r_sonicpt_bondi
  gam = gl_gamma

  write(debug_message,'(a,4f22.14)') "Bondi_pars: ",M,mdot_sonicpt_bondi, &
                                                    r_sonicpt_bondi,gl_gamma
  call CCTK_INFO(debug_message)

  rmin_bondi = M * bondi_rmin(1)
  rmax_bondi = M * bondi_rmax(1)

  cs_sq  =  M / ( 2.*rs - 3.*M ) 

  if( cs_sq > (gam - 1.)) then 
     cs_sq = gam - 1.
     rs = 0.5 * M * ( 3. + 1./cs_sq ) 
  endif
  
  cs     =  sqrt(cs_sq)
  vs_sq  =  M / ( 2. * rs )  
  vs     =  sqrt(vs_sq)
  rhos   =  Mdot / ( 4. * M_PI * vs * rs * rs ) 
  gtemp  =  gam - 1.
  hs     =  1. / ( 1. - cs_sq / (gam - 1.) )
  Kval      = hs * cs_sq * rhos**(-gtemp) / gam 
  Qdot   = hs * hs * ( 1. - 3. * vs_sq ) 
  
  logrmin = log10(rmin_bondi)
  dlogr = (log10(rmax_bondi) - logrmin)/(1.*(N_points-1))

  write(debug_message,'(a,8f22.14)') "More pars: ",cs,vs,rhos,hs,Kval,Qdot,&
                                                   logrmin,dlogr
  call CCTK_INFO(debug_message)

  rhotmp=1.0d30
  imin=1

  do i=1,N_points   
     logr_bondi(i) = logrmin + dlogr*(i-1)
     r_bondi(i) = 10.**(logr_bondi(i))
     utmp = abs(r_bondi(i) - r_sonicpt_bondi) 
     if (utmp < rhotmp) then 
        rhotmp = utmp 
        imin = i 
     endif
  enddo

!!$  rhotmp = -1.  !!$ start with guess
  rhotmp=rhos      !!$ start with value at sonic point!

  do i=imin,N_points
     rspher = r_bondi(i) 
     call find_bondi_solution( rspher, rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot )
     if(rhotmp < initial_rho_abs_min) then
        rhotmp = initial_rho_abs_min
        utmp = Kval * rhotmp**gl_gamma  / (gl_gamma - 1.)
     endif
     rho_bondi(i) = rhotmp
     u_bondi(i)   = utmp
     v_bondi(i)   = vtmp
  end do
  
!!$  rhotmp = -1.
  rhotmp=rhos      !!$ start with value at sonic point!
  
  do i=imin-1,1,-1
     rspher = r_bondi(i)
     call find_bondi_solution( rspher, rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot )
     if(rhotmp < initial_rho_abs_min) then
        rhotmp = initial_rho_abs_min
        utmp = K * rhotmp**gl_gamma  / (gl_gamma - 1.)
     endif
     rho_bondi(i) = rhotmp
     u_bondi(i)   = utmp
     v_bondi(i)   = vtmp
  enddo

  open (47,file="bondi.asc",form="formatted")
  do i=1,N_points   
    write(47,'(i5,4f22.14)')i,r_bondi(i),rho_bondi(i),&
                             u_bondi(i),v_bondi(i)
  end do
  close(47)

!!$  write(debug_message,'(a,4f22.14)') "i=1:",r_bondi(1),rho_bondi(1),&
!!$                                            u_bondi(1),v_bondi(1)
!!$  call CCTK_INFO(debug_message)
!!$  write(debug_message,'(a,4f22.14)') "i=100:",r_bondi(100),rho_bondi(100),&
!!$                                              u_bondi(100),v_bondi(100)
!!$  call CCTK_INFO(debug_message)
!!$  write(debug_message,'(a,4f22.14)') "i=1000:",r_bondi(1000),rho_bondi(1000),&
!!$                                               u_bondi(1000),v_bondi(1000)
!!$  call CCTK_INFO(debug_message)
!!$  write(debug_message,'(a,4f22.14)') "i=1500:",r_bondi(1500),rho_bondi(1500),&
!!$                                               u_bondi(1500),v_bondi(1500)
!!$  call CCTK_INFO(debug_message)

!!$    // find the derivative near r=M in isotropic coords = r=9/4M in schwarzschild; 
  rnew = 2.25 * M
  j = floor ((log10(rnew) - logrmin) / dlogr + 1.0)
!!$  j = NINT((log10(rnew) - logrmin) / dlogr + 1.0)
  rhocheck = rho_bondi(j)
  call find_bondi_solution(rnew,rhocheck, ucheck, vcheck, rs, rhos, M, Mdot, Kval, gam, Qdot )
  uisocheck = 4.0*vcheck/3.0
  
!!$ the previous point was r=M in isotropic coords = r=9/4M in schwarzschild;  this one is r=1.01M in isotropic
  rnew = 0.25 * 3.02**2 * M/1.01
  j = floor((log10(rnew) - logrmin) / dlogr + 1.0)
!!$ j = NINT((log10(rnew) - logrmin) / dlogr + 1.0)
  rhocheck2 = rho_bondi(j)
  call find_bondi_solution( rnew, rhocheck2, ucheck2, vcheck2, rs, rhos, M, Mdot, Kval, gam, Qdot )
  uisocheck2 = vcheck2 / (1.0 - 1.0/2.02) / (1.0+ 1.0/2.02)

  drhodr = 100.0*(rhocheck2-rhocheck)/M 

!!$ Don't divide by M here, to simplify the math
  dudr   = 100.0*(uisocheck2-uisocheck)

  write(debug_message,'(a,3f22.14)') 'Rhocheck:',rhocheck,rhocheck2,drhodr
  call CCTK_INFO(debug_message)
  write(debug_message,'(a,3f22.14)') 'Ucheck:',uisocheck,uisocheck2,dudr
  call CCTK_INFO(debug_message)

  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)




  do i=1,nx
     do j=1,ny
        do k=1,nz
           
           xp=x(i,j,k)
           yp=y(i,j,k)
           zp=z(i,j,k)
           
           riso = sqrt(xp*xp + yp*yp + zp*zp +1.0e-16)
           xhat = xp/riso
           yhat = yp/riso
           zhat = zp/riso
           roverm = riso/M

           bondi_bsmooth = 1.0d0
           
           if(roverm > ONEmTINY) then
              rsch = 0.25 * ( 2.*riso + M)**2 / riso
!!$              jb = floor( 0.5 +  (log10(rsch) - logrmin) / dlogr ) 
              jb = floor( (log10(rsch) - logrmin) / dlogr  + 1.0)
!!$              jb = NINT((log10(rsch) - logrmin) / dlogr + 1.0)

              if(jb >= N_points) jb = N_points-1

              rhotmp = rho_bondi(jb)+(rho_bondi(jb+1)-rho_bondi(jb))*&
                  (rsch-r_bondi(jb))/(r_bondi(jb+1)-r_bondi(jb))
!!$              call find_bondi_solution_bracket( rsch,rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot, &
!!$                   rho_bondi(jb),rho_bondi(jb+1)) 
              call find_bondi_solution( rsch,rhotmp, utmp, vtmp, rs, rhos, M, Mdot, Kval, gam, Qdot)
              rho(i,j,k) = rhotmp
              uiso = vtmp / (1.0 - M/2.0/riso) / (1.0+ M/2.0/riso)
           else
              if(roverm > 0.5d0*ONEmTINY) then
                 rho(i,j,k) = rhocheck+drhodr*riso*(riso-M)/M
              else 
                 rho(i,j,k) = (rhocheck-drhodr*M/4.0)*(1.-cos(2.*M_PI*riso/M))/2.0
                 bondi_bsmooth = 8.0d0*riso**3 
              endif
              utmp = Kval * rho(i,j,k)**( gam ) / (gam - 1.)

!!$ match to uiso and dudr at roverm=1
!!$ a R + b R^3 --->   a+b = uisocheck;  a+3b = dudr
!!$ b = (dudr-uisocheck)/2;  a=3*uisocheck-dudr)/2

              auiso = 1.5*uisocheck-0.5*dudr
              buiso = 0.5*dudr-0.5*uisocheck
              uiso =  roverm*(auiso+buiso*roverm**2)
           endif
           eps(i,j,k) = utmp/rhotmp
           
           w_lorentz(i,j,k) = sqrt(1.0+gxx(i,j,k) * uiso**2)
           velx(i,j,k) = -1.0*uiso * xhat / w_lorentz(i,j,k)
           vely(i,j,k) = -1.0*uiso * yhat / w_lorentz(i,j,k)
           velz(i,j,k) = -1.0*uiso * zhat / w_lorentz(i,j,k)
           
           det=SPATIAL_DETERMINANT(gxx(i,j,k),gxy(i,j,k),gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k))

           Bvecx(i,j,k) = bondi_bsmooth*bondi_bmag*M**2*xhat/sqrt(det)/riso**2
           Bvecy(i,j,k) = bondi_bsmooth*bondi_bmag*M**2*yhat/sqrt(det)/riso**2
           Bvecz(i,j,k) = bondi_bsmooth*bondi_bmag*M**2*zhat/sqrt(det)/riso**2

           call Prim2ConGenM(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k), &
                          gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k), &
                          det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k), &
                    tau(i,j,k),Bconsx(i,j,k),Bconsy(i,j,k),Bconsz(i,j,k), &
                          rho(i,j,k),velx(i,j,k),vely(i,j,k),velz(i,j,k), &
                          eps(i,j,k),press(i,j,k), &
                  Bvecx(i,j,k),Bvecy(i,j,k),Bvecz(i,j,k),w_lorentz(i,j,k))
           
        end do
     end do
  end do

  densrhs = 0.d0
  srhs = 0.d0
  taurhs = 0.d0
  Bconsrhs = 0.d0

  return

end subroutine GRHydro_BondiM_Iso