aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_AlfvenWaveM.F90
blob: 8ed68c283ca3c295d46851a1583213f29bd1a329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
 /*@@
   @file      GRHydro_AlfvenWaveM.F90
   @date      Oct 10, 2011
   @author    Bruno Mundim, Joshua Faber, Scott Noble 
   @desc 
   Circularly Polarized Alfven Wave test as implemented by 
   Beckwith and Stone Astrophys.J.Suppl. 193 (2011) 6, arXiv:1101.3573, 
   and Del Zanna et. al. A&A 473, 11 (2007), arXiv:0704.3206;

   Other relevant references: 
     Stone et. al. Astrophys.J.Suppl. 178 (2008) 137, arXiv:0804.0402;  
     Gardiner and Stone JCP 227, 4123 (2008), arXiv:0712.2634;
     Toth JCP 161, 605 (2000);
   @enddesc 
 @@*/

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

#define velx(i,j,k) vel(i,j,k,1)
#define vely(i,j,k) vel(i,j,k,2)
#define velz(i,j,k) vel(i,j,k,3)
#define sx(i,j,k) scon(i,j,k,1)
#define sy(i,j,k) scon(i,j,k,2)
#define sz(i,j,k) scon(i,j,k,3)
#define Bvecx(i,j,k) Bvec(i,j,k,1)
#define Bvecy(i,j,k) Bvec(i,j,k,2)
#define Bvecz(i,j,k) Bvec(i,j,k,3)
#define Bconsx(i,j,k) Bcons(i,j,k,1)
#define Bconsy(i,j,k) Bcons(i,j,k,2)
#define Bconsz(i,j,k) Bcons(i,j,k,3)


 /*@@
   @routine    GRHydro_AlfvenWaveM
   @date       Oct 10, 2011
   @author     Bruno Mundim, Joshua Faber, Scott Noble
   @desc 
   Initial data for Circularly Polarized Alfven Wave test
   @enddesc 
   @calls     
   @calledby   
   @history 
   Using GRHydro_AdvectedLoopM.F90 as a template.
   @endhistory 

@@*/

subroutine GRHydro_AlfvenWaveM(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS
  
  CCTK_INT  :: i, j, k, nx, ny, nz
  CCTK_REAL :: pi,gam,AA,wnbr
  CCTK_REAL :: vxval,vyval,vzval, valf
  CCTK_REAL :: rhoval,pressval,epsval,hval
  CCTK_REAL :: Bxval, Byval, Bzval
  CCTK_REAL :: dx,dy,dz
  CCTK_REAL :: range_x,range_y,range_z,range_d
  CCTK_REAL :: cos_theta, sin_theta
  CCTK_REAL :: Bvecx_d, Bvecz_d
  CCTK_REAL :: velx_d, velz_d
  CCTK_REAL :: det
  CCTK_REAL :: t1,t2,t3

  pi=4.0d0*atan(1.0d0)

!!$Adiabatic index for this test:
  gam = (5.0d0/3.0d0)

!!$pressure, density, B^x, specific internal energy and enthalpy:
  rhoval   = 1.0d0
  pressval = 1.0d0
  Bxval    = 1.0d0
  epsval = pressval/(gam-1.0d0)/rhoval
  hval   = 1.0d0 + epsval + pressval/rhoval
  
!!$ Alfven Wave Amplitude:
  AA=1.0d0

!!$ Alfven wave speed:
  t1 = rhoval*hval+Bxval**2*(1.0d0+AA**2)
  t2 = 2.0d0*AA*Bxval**2/t1
  t3 = 0.5d0*(1.0d0+sqrt(1.0d0-t2**2))
  valf = sqrt(Bxval**2/t1/t3)

!!$ Vx value:
   vxval=0.0d0
    
  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)

  dx = CCTK_DELTA_SPACE(1)
  dy = CCTK_DELTA_SPACE(2)
  dz = CCTK_DELTA_SPACE(3)

!!$ Note that the 3D test wasn't deviced to be used with AMR!
  range_x = (cctk_gsh(1)-1)*dx
  range_y = (cctk_gsh(2)-1)*dy
  range_z = (cctk_gsh(3)-1)*dz

  range_d = sqrt(range_z**2+range_x**2)

  cos_theta = range_z/range_d
  sin_theta = range_x/range_d

!!$ Alfven wave number
  wnbr = 2.0d0*pi/range_x
  
  do i=1,nx
     do j=1,ny
        do k=1,nz
           
           rho(i,j,k)=rhoval
           press(i,j,k)=pressval
           eps(i,j,k)=epsval
           velx(i,j,k)=vxval
           vely(i,j,k)=-valf*AA*cos(wnbr*x(i,j,k))
           velz(i,j,k)=-valf*AA*sin(wnbr*x(i,j,k))
           Bvecx(i,j,k)=Bxval
           Bvecy(i,j,k)=AA*Bxval*cos(wnbr*x(i,j,k))
           Bvecz(i,j,k)=AA*Bxval*sin(wnbr*x(i,j,k))


!!$           if (CCTK_EQUALS(advectedloop_type,"3D")) then
!!$            Bvecx_d = cos_theta*Bvecx(i,j,k)+sin_theta*Bvecz(i,j,k)
!!$            Bvecz_d = cos_theta*Bvecz(i,j,k)-sin_theta*Bvecx(i,j,k)
!!$            velx_d = cos_theta*velx(i,j,k)+sin_theta*velz(i,j,k)
!!$            velz_d = cos_theta*velz(i,j,k)-sin_theta*velx(i,j,k)
!!$           
!!$            Bvecx(i,j,k) = Bvecx_d
!!$            Bvecz(i,j,k) = Bvecz_d
!!$            velx(i,j,k) = velx_d
!!$            velz(i,j,k) = velz_d
!!$           end if 
           
           det=SPATIAL_DETERMINANT(gxx(i,j,k),gxy(i,j,k),gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k))
           
           if (CCTK_EQUALS(GRHydro_eos_type,"Polytype")) then
              call Prim2ConPolyM(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k),&
                   gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k),&
                   det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k),&
                   tau(i,j,k),Bconsx(i,j,k),Bconsy(i,j,k),Bconsz(i,j,k),rho(i,j,k),&
                   velx(i,j,k),vely(i,j,k),velz(i,j,k),&
                   eps(i,j,k),press(i,j,k),Bvecx(i,j,k),Bvecy(i,j,k),Bvecz(i,j,k),&
                   w_lorentz(i,j,k))
           else
              call Prim2ConGenM(GRHydro_eos_handle,gxx(i,j,k),gxy(i,j,k),&
                   gxz(i,j,k),gyy(i,j,k),gyz(i,j,k),gzz(i,j,k),&
                   det, dens(i,j,k),sx(i,j,k),sy(i,j,k),sz(i,j,k),&
                   tau(i,j,k),Bconsx(i,j,k),Bconsy(i,j,k),Bconsz(i,j,k),rho(i,j,k),&
                   velx(i,j,k),vely(i,j,k),velz(i,j,k),&
                   eps(i,j,k),press(i,j,k),Bvecx(i,j,k),Bvecy(i,j,k),Bvecz(i,j,k),&
                   w_lorentz(i,j,k))
           end if
           
        enddo
     enddo
  enddo
  
  densrhs = 0.d0
  srhs = 0.d0
  taurhs = 0.d0
  Bconsrhs = 0.d0

  return
  
end subroutine GRHydro_AlfvenWaveM